Solinst Model 415 12V Submersible Pump
Features
- Very simple to operate and adjust from high to low flow rates
- Smooth, short (6" nominal) pump design avoids getting stuck in wells
- Fits inside Nominal 2" OD Sched. 40 or 80 PVC Pipe
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
The Solinst 12V Submersible Pump provides an efficient means of purging and obtaining groundwater samples from monitoring wells. The 12V Submersible Pump and 12V Pump Controller are lightweight, portable, and easy to set up, deploy and operate. The Pump’s sleek, short design ensures it fits easily down wells without hang-ups. The Solinst 12V Submersible Pump is capable of pumping groundwater from 36.5 m (120 ft) below ground surface, with flow rates up to 13.5 L/min (3.6 US gpm) in shallow conditions.
The Solinst 12V Submersible Pump system comprises the 12V Submersible Pump with cable, 12V Pump Controller, sample tubing (sold separately), and a user-supplied power source. The 12V Submersible Pump cable simply connects to the 12V Pump Controller, which then clips to a 12V power source. The 3/8" (9.5 mm) ID LDPE sample tubing is pushed onto the barbed fitting on the 12V Pump.
Convenient LED lights on the Controller indicate the status of the 12V Submersible Pump system, including high or low battery voltage, proper battery connection, normal operation and maximum flow rate. It has an easy-to-reset circuit breaker (no fuse to replace). Simply turn the dial on the 12V Pump Controller clockwise to increase the voltage to the Controller, which turns the Pump’s motor faster and increases the flow rate.
Sampling Depth: As much as 36.5 m (120 ft) below ground surface
Flow Rates: Up to 13.5 L/min (3.6 US gpm)
Pump Cable Length: 130 ft (40 m)
Pump Cable Weight: 3.5 kg ( 7.8 lbs)
Wetted Materials: ABS pump body, 304 stainless steel motor, impeller and eyebolt, polypropylene hose barb, nitrile/buna o-rings and seals, PVC jacket electrical wire
Pump Size: 4.78 cm OD x 13.97 cm long (1.88" x 5.5")
Pump Weight: 0.8 kg (1.8 lbs)
Controller Size: 33 cm x 13 cm x 17 cm (13” x 5” x 6.5”)
Controller Weight: 3.4 kg (7.5 lbs)
Controller Cable Length: 1 m (3.5 ft)
Power Source: 12V Deep Cycle 60 amp AGM Battery or larger, or vehicle or marine battery.
Voltage Required: 12.5V–15V at source
Power Draw: 20mA (when dial is OFF), 3A (dial is at 1) to 36A (dial is at MAX (10))
Max. Run Time: Continuous, as long as Pump fully submerged during operation
Warranty: 12V Submersible Pump: 90 Days; 12V Pump Controller: 3 Years
In The News
The Birds and the Bees: Understanding the Diversity of Pollinators
Pollinators of all shapes and sizes are vital to ecosystems around the world. From the wide array of food people eat to the diversity of life around the planet, life would be very different without them. Pollinators are organisms that help carry pollen from one plant to another, and over 350,000 species can be found worldwide, according to The California Department of Fish and Wildlife . With the strong relationship between plants and pollinators, losing either would have detrimental impacts on ecosystems. 
 
 Over millions of years, both plants and pollinators have evolved alongside each other and formed unique adaptations that allow them to work together, expediting and enhancing the process of pollination.
Read MoreMonitoring Volcanic Activity in Hawaii: Safeguarding Public Safety with the Hawaiian Volcano Observatory
The eight main Hawaiian Islands are made up of 15 volcanoes, six of which are active as of 2023 . Many locals live on or near an active volcano, making the monitoring and understanding of volcanic activity a core issue of public safety on the islands. Organizations like the Hawaiian Volcano Observatory (HVO) have spent decades monitoring the islands’ volcanoes to protect the public, develop a deeper understanding of the islands’ volcanos and forecast eruptions whenever possible. 
 
Even those who live away from edifices like Mauna Loa often have connections to the people living near the volcano.
Read MoreCrystal Clear Problems: Impacts of Water Transparency in Aquatic Ecosystems
From crystal clear alpine lakes to muddy rivers and boggy swamps, water transparency is an easily observable water quality parameter to anyone who takes a few moments to peer into the (sometimes) murky depths. Water transparency varies dramatically based on the location of bodies of water among different watershed environments, but it can also change quickly due to a variety of internal and external factors. 
 
 At Miami University (OH), the Global Change Limnology Lab explores the many ways that water transparency impacts aquatic ecosystems. Operational for nearly 20 years, the lab trains undergraduate and graduate students and has conducted work from the midwest Great Lakes to Alaska, South America and New Zealand. 
 
 The Global Change Limnology Lab, headed by Dr.
Read More