Stevens HydraProbe Soil Moisture Sensors

The Stevens HydraProbe is a sensor that simultaneously measures soil moisture, salinity, and temperature using a unique patented design.

Features

  • Instantaneous sensor response with no calibration requirements
  • Compact, rugged, zero-maintenance design for long-term deployments
  • Easy integration with NexSens data logging & telemetry products
Starting At $545.00
Stock 4AVAILABLE

Overview
The Stevens Hydraprobe measures 21 different soil parameters simultaneously. The HydraProbe instantly calculates soil moisture, electrical conductivity, salinity, and temperature and supplies raw voltages and complex permittivity for research applications. A compact, rugged design with potted internal components makes the HydraProbe easy to deploy and leave in the soil for years without maintenance.

Electrical Response Parameters
The Stevens HydraProbe design is unique compared to other soil moisture probes because the electrical response of soils can be specified by two parameters - the dielectric constant and the conductivity. The dielectric constant is most indicative of water content, while the conductivity is strongly dependent on soil salinity. Unlike other capacitance-type sensors, the HydraProbe measures both of these components simultaneously. The high-frequency electrical measurements indicating the capacitive and conductive properties of soil are then directly related to the soil's moisture and salinity content, while a thermistor determines soil temperature.

Remote Capabilities
The HydraProbe soil moisture sensor includes SDI-12 or RS-485 outputs for interfacing with external data loggers such as the NexSens X3. Sensor cables can be factory-connected with NexSens UW plug connectors for integration to an X3 data logger sensor port. Data retrieval options using the X3 include direct-connect, Wi-Fi, cellular, and Iridium satellite telemetry.

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Stevens HydraProbe Soil Moisture Sensors
56012-02
HydraProbe PROFESSIONAL soil moisture, temperature, & salinity sensor with SDI-12 interface, 25' cable
Your Price $545.00
4 Available
Stevens Hydra Probe II Soil Moisture Sensor
56485-02
HydraProbe PROFESSIONAL soil moisture, temperature, & salinity sensor with RS485 interface, 25' cable
$545.00
Check Availability  
Stevens Hydra Probe II Soil Moisture Sensor
56012-04
HydraProbe PROFESSIONAL soil moisture, temperature, & salinity sensor with SDI-12 interface, 50' cable
$595.00
Check Availability  
Stevens Hydra Probe II Soil Moisture Sensors
56485-04
HydraProbe PROFESSIONAL soil moisture, temperature, & salinity sensor with RS485 interface, 50' cable
$595.00
Check Availability  
Stevens Hydra Probe II Soil Moisture Sensor
56012-06
HydraProbe PROFESSIONAL soil moisture, temperature, & salinity sensor with SDI-12 interface, 100' cable
$695.00
Check Availability  
Stevens Hydra Probe II Soil Moisture Sensor
56485-06
HydraProbe PROFESSIONAL soil moisture, temperature, & salinity sensor with RS485 interface, 100' cable
$695.00
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Long-Term Monitoring in the Chautauqua Lake Watershed

With a widely developed shoreline, Chautauqua Lake experiences influxes of non-point source pollution that have historically impacted the health of the lake. The Chautauqua Lake Association (CLA) has been monitoring the lake for over two decades, reporting on changes that have occurred over the years. A pair of local lake advocates, Jane and Doug Conroe, have lived on the lake for over 40 years and have played an important role in establishing monitoring programs and facilitating consistent data collection throughout the watershed. Doug has been involved with the Chautauqua Lake Association (CLA) since the pair moved to the area in 1980, and is currently serving as the Executive Director.

Read More

No Red Herrings: Data Driving the Largest Salt Marsh Restoration in the NE USA

The Herring River system encompasses around 1,000 acres in the Towns of Wellfleet and Truro, Massachusetts. In 1909, the Chequessett Neck Road dike was built at the river’s mouth, drastically limiting tidal flow. Today, it’s one of the most restricted estuaries in the northeastern United States. As a result, the area has suffered environmental decline, including poor water quality, hypoxia, lower pH, and salt marsh degradation. In 2023, the Town of Wellfleet received $14.7 million from NOAA’s Office of Habitat Conservation to fund the Herring River Restoration Project (HRRP). Francesco Peri, President and CEO at Charybdis Group LLC, uses a network of NexSens data loggers to monitor water level and water quality on the Herring River.

Read More

Carbon and Nutrient Monitoring in the Great Lakes Using Satellite Observations

Carbon and nutrients are the foundation of lake food webs and play an important role in the chemical and physical processes that shape aquatic ecosystems and various lake dynamics. Studying these cornerstones can help improve understanding of other lake conditions like harmful algal blooms, hypoxia, and phytoplankton community composition. The way in which these characteristics are monitored varies, though many rely on a proxy approach wherein parameters are extrapolated from the measurement of a different parameter. An assistant professor at Cleveland State University, Brice Grunert, is working to improve current strategies and take a satellite approach to monitoring the Great Lakes.

Read More