YOUNG Wind Sentry Anemometer & Vane
Features
- Anemometer uses three lightweight hemispherical cups to measure wind speed
- Vane employs a balanced assembly with position sensed by a long-life potentiometer
- Precision stainless steel ball bearings are used throughout
Image | Part# | Product Description | Price | Stock | Order | |
---|---|---|---|---|---|---|
![]() | 03002 | Wind Sentry anemometer & vane | $704.00 | Drop ships from manufacturer | ||
![]() | 03002L | Wind Sentry anemometer & vane, 4-20 mA = 0-50 m/s | $998.00 | Drop ships from manufacturer | ||
![]() | 03002V | Wind Sentry anemometer & vane, 0-1 V = 0-50 m/s | $1,008.00 | Drop ships from manufacturer |



Image | Part# | Product Description | Price | Stock | Order | |
---|---|---|---|---|---|---|
![]() | 18641 | Sensor cable, 2 conductor shielded, 22 AWG, per ft. | $0.72 | Drop ships from manufacturer | ||
![]() | 18446 | Sensor cable, 5 conductor shielded, 22 AWG, per ft. | $0.92 | Drop ships from manufacturer | ||
![]() | 18723 | Sensor cable, 2 pair shielded, 22 AWG, per ft. | $0.82 | Drop ships from manufacturer |


The YOUNG Wind Sentry Anemometer and Vane are professional quality sensors suitable for a wide range of wind measurement applications. These economically priced sensors provide excellent sensitivity, corrosion resistance, and minimal parts count for easy maintenance.
The anemometer uses three lightweight hemispherical cups to measure wind speed. Cup wheel rotation produces an AC frequency that is linearly proportional to wind speed. The vane employs a balanced vane assembly with vane position sensed by a long life precision potentiometer. Precision stainless steel ball bearings are used throughout.
Range:
Wind Speed: 0-50 m/s (112 mph)
Azimuth: 360° mech.,352° electrical (8° open)
Accuracy:
Wind Speed: ±0.5 m/s (1.1 mph)
Wind Direction: ±5°
Threshold*:
Anemometer: 1.1 m/s (2.5 mph)
Vane: 1.3 m/s (2.9 mph) at 10°
Signal Output:
Wind Speed Signal: AC sine wave, 1 pulse per rev.
Wind Direction Signal: DC voltage from 10Kohm conductive plastic potentiometer, 1% linearity, life expectancy: 50 million revolutions.
Power Requirement: Potentiometer excitation 15 VDC max
Dimensions:
Overall height: 32 cm (12.6 in)
Crossarm Length: 28cm (11.0 in) between instrument centers
Vane length: 22 cm (8.7 in)
Cup wheel diameter: 12 cm (4.7 in)
Crossarm mounting: 34 mm (1.34 in) diameter (standard 1 inch pipe)
Shipping Weight: (03002) 1.3 kg (3 lb)
In The News
Charles River Algal Blooms Stop Swimming and Launch a Floating Wetland
The Charles River used to be a swimming hotspot for Cambridge and Boston residents. 
 
 Decades of industrial pollution and nutrient runoff have degraded water quality and eliminated public swimming in the Lower Charles, but a movement is afoot to get Boston and Cambridge back in the water. One step toward the goal of a safely swimmable river—without the need to obtain a permit, as is now necessary—is detecting and managing the harmful algal blooms that appear on the river. 
 
 An experimental floating wetland and new research and analysis of water quality data that shows a possible effective detection system for algal blooms on the Charles River are two new steps toward the goal of safe, accessible swimming.
Read MoreHarnessing the Gulf Stream for Renewable Energy
The Gulf Stream, the massive western boundary current off the east coast of North America, moves water from the Gulf of Mexico north and west across the Atlantic Ocean. There’s a lot of energy in that much moving water and researchers are trying to put it to use. 
 
 Although the Gulf Stream’s path shifts (researchers say it acts like a wiggling garden hose), in a couple of spots, it stays relatively stable. At one such spot off the coast of Cape Hatteras, North Carolina, researchers have dropped moorings and research instruments to study the current with the eventual goal of harnessing it for renewable energy.
Read MoreBuoys in the time of Covid: Delays to important information
In early 2020, Michigan found itself facing one of the worst outbreaks of Covid-19 in the country. Though it’s close to second nature now, businesses, schools and governments were suddenly forced to conduct business without close contact. Universities and research institutions had to pause some scientific research. Whatever was able to continue slowed to a crawl. 
 
 Around the Great Lakes, a network of buoys monitors dozens of water quality parameters and lake conditions, reporting them in real time. This year, the monitoring season was cut a bit short as Covid-19 restrictions hit in the weeks before buoys were set to be deployed.
Read More