Eno Scientific WS 131 Flow Meter
The Eno Scientific WS 131 Flow Meter is designed to measure water flow for monitoring well drawdown and usage.
Features
- Flow meter housings are available in 5 sizes
- Data can be displayed and logged by the Well Sounder 2010 PRO
- Includes the total flow, flow rate and recovery rate functions
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
The WS 131 features a simple design consisting of a PVC housing and an electronic sensor module that easily attache to the housing using a hand tightened ring nut. Once the sensor is installed, it transmits electrical pulses that are generated as water moves past the paddle wheel. The amount of water volume that passes through the pipe can be interpreted by an Eno Scientific water level meter like the Well Sounder 2010 Pro. During inactivity, the sensor can be removed and replaced with an inexpensive plug with the same kind of hand tightened ring nut concept.
Flow meter housings are available in various sizes. The 1", 1.5" and 2" housings are in-line tees made with Type 1 PVC with sockets for schedule 40 PVC pipes, and compatible with common PVC piping and adhesives. The 3" and 4" housings are saddle tees made of Type 1 PVC which clamps onto schedule 40 PCV pipes.
The paddle wheel is made of a tough polyethylene material and is the only object subject to wear in the entire system. In case of highly abrasive water flow, the paddle wheel may experience wear with time but is easily replaced without tools.
The electronic flow sensor operates off a 5-24 VDC power supply and provides an output voltage on the signal line which switches between Vin and ground as the paddle wheel turns. Data collection is configurable by either plugging a ready-to-plug cable into the Well Sounder 2010 Pro, or with three-wire leads for connection to other data logging devices. An accessory splitter is necessary for the Well Sounder to monitor and log data from both the flow meter and the probe.
- Materials
- Housings: Type 1 PVC
- Paddle Wheel: HDPE
- O-Ring: Buna N
- Axle: Tungsten Carbide
- Plumbing & Physical
- Pipe Size: Schedule 40 PVC
- Test Pressure: 240 psi
- Temperature: 32 – 140° F (0 – 60° C)
- Dimensions
- 1" Housing: 5.75 x 4.5 x 2.4″
- 1.5" Housing: 6.25 x 5.25 x 2.4″
- 2" Housing: 7.11 x 5.75 x 3″
- 3" Housing: 5.0 x 5.5 x 6.5″
- 4" Housing: 5.0 x 6.5 x 7.5″
- Clearance for Sensor Removal: 3.5”
- Electrical
- Power: 5 – 24V at 500 uA max
- Output Signal: Pull-to-ground (+V – 0V)
- Pulse Width: ~5mS
- Frequency: 0.3 – 200 Hz
- (1) Flow meter
In The News
Onset HOBO RX3000 Remote Soil Monitoring Station
The Onset HOBO RX3000 Remote Monitoring Station is an environmental monitoring system that continuously logs data from compatible sensors that measure soil moisture, water level, temperature and various weather parameters. With numerous options for remote monitoring systems, Onset provides a Build-a-system configurator to help with ordering a system fit for any project’s needs. The configurator easily guides the user through the process of selecting different types of communication, power, sensor and other site-specific requirement selections when building their ideal system. 
 
 The RX3000 ships with mounting plates and hardware, rubber cable channels, rubber plugs, grease, grounding wire and U-bolts.
Read MoreLake Malawi: A Treasure to Protect
Lake Malawi (also known as Lake Nyasa and Lake Niassa) doubles as a Rift Valley Lake and one of the seven African Great Lakes. Due to its unique biodiversity, it’s a great place to conduct limnological studies. Harvey Bootsma is a professor for the School of Freshwater Sciences at the University of Wisconsin-Milwaukee and has had an interest in limnology ever since he was a kid. Bootsma fondly recalls summer vacations to Georgian Bay, Ontario, “I probably spent as much time in the water as I did out of it.” He continues, "I remember telling myself, ‘I’m going to get a job where I can stay here all the time.’” While Harvey didn’t end up working on Georgian Bay, he was offered a job working on Lake Malawi. He continued working there while completing his Ph.D.
Read MoreMicrobes and Human Health: Aquatic Microbial Communities May Hold Clues about How Deadly Pathogens Spread
Aquatic ecosystems are incredibly complex, with many different biotic and abiotic factors constantly interacting. Microbial communities are a key part of aquatic ecosystems, involved in the constant flow of energy and recycling of organic matter, according to Science Direct . The true scope of microbial community impacts on aquatic ecosystems is still not entirely understood. Eric Benbow, a professor of community ecology at Michigan State University, is exploring how microbial communities and pathogens may be negatively impacting human health, and how a changing climate could worsen this problem. 
 How Do Pathogens Arise? 
 Benbow, along with his students and colleagues, are studying a realm of community ecology that is still relatively unknown.
Read More