KestrelMet 6000 Wireless Weather Stations
Features
- Measures key weather parameters with wireless Wi-Fi or cellular communication
- Optional leaf wetness, solar irradiance, and soil moisture sensors
- First year of cellular data plan is included at no additional cost
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The KestrelMet 6000 is a reliable cost-effective all-in-one professional weather station for commercial, industrial, educational, and research applications. Easily deployable and remote, the KestrelMet arrives pre-assembled for fast set up and frustration-free installation. Cellular versions of the KestrelMet 6000 include a low-cost cellular plan with the first year free.
Mounting Options
Choose between the Mono Mount Kit or the Tripod Mount Kit to best fit research needs. Both options offer quick installation and a secure mounting system. The Mono Mount can be used on a pitched or flat roof as well as a vertical surface such as a gable end. The Tripod can be used on flat terrain, on a flat roof, or on the ridge of a pitched roof.
Design
Solar radiation can cause measurement errors and reduce sensor accuracy. Shielding over the air temperature and relative humidity sensors and a 24-hour aspirated fan keep air moving constantly over the sensors. This results in a significant improvement in measurement accuracy versus passive-shielded weather stations with no aspiration fan.
*Note: cellular transmission is set at 15-minute intervals.
Sensors | Accuracy (+/- | Resolution | Range | Notes |
Wind Speed | larger of 5% or 1 mph between 1 to 57 mph | 0.1 mph 0.1 knot 0.1m/s 0.1 km/hr |
1 to 100 mph 1 to 86.9 knots 1 to 44.7 m/s 1 to 160.9 km/hr |
Wind speed is measured continuously and stored in station memory as a series of 2 second averages. The reported wind speed is the average over the 15 minute logging interval. The highest measured speed during the logging interval is reported as the gust value. |
Wind Direction | 2° | 1° | 1° - 360° | Wind direction is measured continuously and stored in station memory as a series of 2 second averages. The reported wind direction is the average scalar direction over the 15 minute logging interval. The gust direction is the average scalar direction for the 2 second record corresponding to the gust value. |
Temperature |
0.45° F |
0.1° F 0.1° C |
-40° to 140° F -40° to 60° C |
Temperature is measured once per minute. The reported temperature is the average value for the 15 minute logging interval. High and low temperatures are based on the 1-minute readings. |
Relative Humidity | 1.5% between 0 - 80% | 1% | 0 to 100% | Humidity is measured once per minute. The reported humidity is the average value for the 15 minute logging interval. High and low RH are based on the 1-minute readings. |
Absolute Pressure | 1.5 mbar/hPa 0.044 inHg 1.1 mmHg |
0.1 mbar/hPa 0.01 inHg 0.1 mmHg |
600 to 1100 mbar/hPa 17. 72 to 32.48 inHg 450.0 to 825.1 mmHg |
Pressure is measured once per minute. The reported pressure is the average value for the logging interval. High and low pressures are based on the 1-minute readings. |
Rain Rate | 5% at 2"/hr | 0.01 in/hr 0.1 mm/hr |
0 to 7.8 in/hr | Rainfall is measured continuously in 0.2 mm increments (tipping bucket calibration volume) |
In The News
Bringing Fish Back: Reviving Britain’s Freshwater Habitats with the Wild Trout Trust
Freshwater covers less than 1% of the Earth’s surface but has an outsized impact on global ecosystems, supporting more than 10% of all known species, reports the World Wildlife Fund . Freshwater environments such as rivers and wetlands provide significant scientific, economic, and cultural value. But pressure from climate change, biodiversity loss, and a lack of prioritization in environmental policies mean freshwater habitats are recognized as one of the most threatened in the world–something scientists have dubbed an “invisible tragedy. ” 
 
[caption id="attachment_39210" align="alignnone" width="940"] Remedial works underway to shore up the banks of the River Ecclesbourne.
Read MoreMonitoring and Facilitating Habitat Restoration Efforts in the Great Lakes
While human infrastructure, urbanization, and industrialization have advanced human societies, the natural environment has suffered due to constructed impediments and deteriorating architecture. In order to combat this degradation, habitat restoration programs across the US work to remove impairments and improve damaged waterways. 
 
[caption id="attachment_39162" align="aligncenter" width="940"] Barge electrofishing by state and federal employees prior to habitat restoration on Wiscoy Creek which is a tributary to the Genesee River. (Credit Thomas Hoffman)[/caption] 
 Habitat Restoration Efforts in the Great Lakes 
Tom Hoffman, aquatic habitat restoration biologist in the Lower Great Lakes basin, directs restoration efforts within tributaries to Lake Erie, Lake Ontario, and the St.
Read MoreSustainable Fishing in Alaska: Protecting the Salmon Capital of the World through Research
In the far north, the Alaska Peninsula stretches away from the Last Frontier into the Pacific Ocean. A narrow strip of land dotted with freshwater lakes and intruded upon by ocean inlets–this unique region is intimately connected with the surrounding water. 
 
Nestled halfway down the peninsula's southern coast are the small villages of Chignik. The area has historically been home to the Aleut people and has been heavily reliant on fishing for centuries. 
 
Home to commercial and subsistence fishing today, Chignik continues to rely upon the salmon returns to the surrounding villages, which are supported by scientists working tirelessly to understand and steward these fish populations.
Read More