Kipp & Zonen SMP Series Smart Pyranometers

The Kipp & Zonen SMP Series Smart Pyranometers are designed for measuring short-wave irradiance on a plane surface, which results from the sum of the direct solar radiation and the diffuse sky radiation incident from the hemisphere above the instrument.

Features

  • Internal digital signal processing and interfaces for industrial applications
  • Automatic correction for temperature dependence of the detector sensitivity
  • Built-in bubble levels and adjustable leveling feet
Your Price Call
Stock Check Availability  

Overview
The Kipp & Zonen SMP Series Smart Pyranometers are high-quality radiometers designed for measuring short-wave irradiance on a plane surface (radiant flux, W/m²), which results from the sum of the direct solar radiation and the diffuse sky radiation incident from the hemisphere above the instrument.

Integration
SMP pyranometers feature internal digital signal processing and interfaces optimized for industrial data acquisition and control systems. Kipp & Zonen has developed a smart interface that features RS-485 Modbus data communication for connection to programmable logic controllers (PLC’s), inverters, digital control equipment and the latest generation of data loggers. Amplified Voltage or Current outputs are also included for devices that have high-level analog inputs or current loop interfaces.

Model Options
All models are available in two versions. One has an analog voltage output of 0 to 1 V, and the other has an analog current output of 4 to 20 mA. They all have a 2-wire RS-485 interface with Modbus (RTU) protocol. Digital signal processing provides faster response times and, with an integrated temperature sensor, corrects for the temperature dependence of the detector sensitivity.

Design
To achieve the required spectral and directional characteristics, SMP Series pyranometers use thermopile detectors and glass domes. All SMPs have built-in bubble levels and adjustable leveling feet. Snap-on sun shields reduce solar heating of the housings. The waterproof connectors have gold-plated contacts.

Questions & Answers
Can the Kipp & Zonen SMP smart series pyranometers be mounted to a Lufft WS-series weather sensor?
Yes, just be sure to mount the pyranometer where it will not be shaded and do not obstruct the wind sensor on the WS-series instrument. There is a mounting rod (CMF1) and bracket (CMB1) for pole-mounting the pyranometer. The Lufft WS sensors have an integrated bracket mount & U-bolts to mount to a pole, but there is a traverse mount available if you want to offset it. https://www.fondriest.com/lufft-ws-series-sensor-traverse-mounting-kit.htm
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Kipp & Zonen SMP Series Smart Pyranometers
0374900-100
SMP3-V Smart Pyranometer, 0-1V & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374900-200
SMP3-A Smart Pyranometer, 4-20mA & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374920-100
SMP6-V Smart Pyranometer, 0-1V & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374920-200
SMP6-A Smart Pyranometer, 4-20mA & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374905-100
SMP10-V Smart Pyranometer, 0-1V & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374905-200
SMP10-A Smart Pyranometer, 4-20mA & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374940-100
SMP22-V Smart Pyranometer, 0-1V & RS-485 Modbus output, no cable
Request Quote
Check Availability  
Kipp & Zonen SMP Series Smart Pyranometers
0374940-200
SMP22-A Smart Pyranometer, 4-20mA & RS-485 Modbus output, no cable
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Data-Driven Advocacy on the Lower Deschutes River

Like many freshwater environments, the Deschutes River in Oregon is under pressure from development, pollution, and climate change. Many rivers, streams and lakes in the Deschutes Basin do not meet Oregon water quality standards –where state water quality monitoring assesses levels of bacteria, pH, dissolved oxygen, temperature, and fine sediment. Hannah Camel is the Water Quality Coordinator for the Deschutes River Alliance (DRA), a non-profit organization that focuses on the health of the lower 100 miles of the Deschutes River–the area most affected by human intervention. As a data-driven organization, the DRA has benefited from the installation of two NexSens X2 data loggers.

Read More

Expanding the Port Everglades: Real-Time Monitoring of Water Quality Conditions from Planned Dredging Operation

The Port Everglades in Broward County, Florida, serves large trade vessels and cruiseliners and incoming and outgoing recreational boaters. However, as cargo ships become larger, the port must expand. A dredging project led by the US Army Corps of Engineers will substantially deepen and widen the port's navigation channel to accommodate larger Panamax cargo ships and modern cruise liners. As a result of this project, a large amount of sediment will be displaced into the water column. This suspended sediment may settle outside of the project area, burying benthic organisms like corals, and possibly carrying harmful particulates to other regions. [caption id="attachment_39497" align="aligncenter" width="2560"] A CB-950 and CB-25 deployed on site at Port Everglades.

Read More

It’s Time to React to Water Quality: Proteus Multiparameter Probe aboard NexSens Buoy

Water quality monitoring is essential for safeguarding public health, protecting ecosystems, and ensuring the sustainability of water resources. Contaminants such as industrial pollutants, agricultural runoff, and sewage discharge can severely impact aquatic life and pose serious risks to human health if left unchecked. Traditionally, water quality monitoring has been a slow and labor-intensive process, requiring samples to be collected, transported to a lab, and analyzed—a process that can take days. However, with the advancement of real-time sensor technology, environmental agencies, researchers, and industries can now monitor water quality instantly.

Read More