Lufft Ventus Multi-Parameter Weather Sensor

The Lufft Ventus Multi-Parameter Weather Sensor with metal housing simultaneously measures wind speed & direction along with pressure and virtual air temperature.

Features

  • Four ultrasound sensors take cyclical measurements in all directions
  • Easily mounts to 2" diameter pipe with integrated bracket mount & nuts
  • SDI-12 output for integration with NexSens and other data loggers
List Price $$$$$
Your Price Check Price
Usually ships in 1-2 weeks
Lufft
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Lufft Ventus Multi-Parameter Weather Sensor8371.UMT Ventus multi-parameter weather sensor with metal housing, virtual temperature, pressure & wind
Check Price
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
Lufft Ventus/V200A Sensor Interface Connector 8371.UST1 Sensor interface connector
Check Price
Usually ships in 1-2 weeks
Lufft Ventus/V200A Sensor Interface Cables 8371.UK015 Sensor interface cable with connector, 15m
Check Price
Usually ships in 1-2 weeks
Lufft Ventus/V200A Sensor Interface Cables 8371.UK050 Sensor interface cable with connector, 50m
Check Price
Usually ships in 1-2 weeks
Lufft 24V/10A Power Supply 8366.USV2 Power supply, 24V/10A
Check Price
Usually ships in 1-2 weeks
Lufft Surge Protector 8379.USP Surge protector
Check Price
Usually ships in 1-2 weeks
Lufft RS-485 to USB Converter 8160.RS485USB 1-port RS-485 to USB converter
Check Price
Usually ships in 1-2 weeks

Overview
The Lufft family of multi-parameter weather sensors offer a cost-effective, compact alternative for the acquisition of a variety of measurement parameters on land- and buoy-based weather stations. Depending on the model, each sensor will measure a different combination of weather parameters to meet a wide variety of applications.

Pressure
Absolute air pressure is measured using a built-in MEMS sensor. The relative air pressure referenced to sea level is calculated using the barometric formula with the aid of the local altitude, which is user-configurable on the equipment.

Wind Speed & Direction
The wind sensor uses four ultrasound sensors which take cyclical measurements in all directions. The resulting wind speed and direction are calculated from the measured run-time sound differential.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Solar and Wind-Powered, Algae Tracking Boat Trialed in Florida

Time is of the essence when it comes to tracking algal blooms, and people everywhere are looking for solutions. In Florida, scientists from Florida Atlantic University Harbor Branch Oceanographic Institute (HBOI) recently trialed a solar-powered, algae-tracking sail boat developed by Navocean , Inc. Dr. Jordon Beckler of Florida Atlantic University (FAU) directs HBOI's Geochemistry and Geochemical Sensing Lab and spoke to EM about the trials and the boat. "This boat is so amazing when you see it in action," remarks Dr. Beckler. "Navocean originally contacted me a few years back about a demonstration when I was over at my previous institution in West Florida, and we brainstormed some scenarios for employing the boat for harmful algae bloom monitoring.

Read More

CICHAZ Biological Field Station Provides A Unique Educational and Research Experience in Mexico’s Huasteca Region

The story of the Centro de Investigaciones Científicas de las Huastecas "Aguazarca" (CICHAZ) Biological Field Station, a member of the Organization of Biological Field Stations ( OBFS ), starts with Dr. Gil Rosenthal, Professor of Biology and Chair of Ecology and Evolutionary Biology at Texas A & M University . Rosenthal has worked in the Huasteca region of Mexico since 1994 and for years kept his research equipment at a local ranch/hotel with the dream of one day having a field station where he could run experiments with collaborators and students. Since 2005, Rosenthal has been the Co-Director of the field station along with his wife, Dr.

Read More

Eyes Underwater Watching Aquatic Wildlife

For as long as scientists have been studying the ocean, they have been limited by a lack of power. However, recent work from researchers at the University of Washington (UW) offers a promising new way to harvest energy from waves at sea. UW associate professor of mechanical engineering Brian Polagye spoke to EM about a recent project that used wave energy to power one of UW’s Adaptable Monitoring Packages, or AMPs. “Our work in this area has really been ongoing since about 2012,” explains Dr. Polagye. “We put our first prototype AMP in the water back in 2015. Since then, it’s been going through successive evolutions, variations on the package.

Read More