HOBOnet Wireless Multi-Depth Soil Moisture Sensor

The Onset HOBOnet Multi-Depth Soil Moisture Sensor is a wireless sensor that works with the HOBOnet system to measure soil moisture and soil temperature at multiple depths with a single probe.

Features

  • 900 MHz wireless mesh self-healing technology
  • 450 to 600 meter (1,500 to 2,000 feet) wireless range and up to five hops
  • Up to 50 wireless sensors or 336 data channels per HOBO RX station
$839.00
Stock Check Availability  

Overview
The Onset HOBOnet Multi-Depth Soil Moisture Sensor is a wireless sensor that works with the HOBOnet system to measure soil moisture and soil temperature at multiple depths with a single probe. This durable sensor is available in three probe lengths, for measurements up to 90 cm (35 in) deep.

Mechanics
Featuring GroPoint's TDT5 technology with patented antenna design, this sensor measures soil moisture along the entire length of each probe segment, resulting in the largest volume of influence per measurement section. A high frequency of pulses per measurement provides precise and consistent soil moisture data.

Applications
The optional pilot rod and slide hammer are recommended for quick and easy installation: the PILOT-ROD4 (28") for use with the 3-segment and 4-segment sensors (RXW-GP3A and RXW-GP4A) and the PILOT-ROD6 (40) for use with the 6-segment sensor (RXW-GP6A).

The HOBOnet system is a cost-effective and scalable wireless sensor network for web-enabled monitoring of field conditions for applications such as crop management, research, and greenhouse operations. Because it's wireless, users can deploy a network of sensors to easily monitor multiple points with a single system, while avoiding the risk of long cables that can interfere with field operations. Sensors are easily linked to the network, and data can be accessed through HOBOlink, Onset's innovative cloud software platform.

Soil Moisture: Volumetric Water Content (VWC)
Measurement Range In soil: 0 to 0.550 m³/m³ (volumetric water content)
Accuracy ±0.02 m³/m³ (±2%) in most soils typical from 0° to 50°C (32° to 122°F)*
Resolution 0.001 m³/m³
Temperature
Measurement Range -20° to 70°C (-4° to 158°F)
Accuracy ±0.5°C (0.9°F)
Resolution 0.1°C (0.18°F)
Depths Measured (see below)
RXW-GP3A-xxx 45 cm (18 inches) total; three soil moisture zones, six temperature depths
RXW-GP4A-xxx 60 cm (24 inches) total; four soil moisture zones, six temperature depths
RXW-GP6A-xxx 90 cm (35 inches) total; six soil moisture zones, nine temperature depths
Wireless Mote
Operating Temperature Range Sensor: -20° to 70°C (-4° to 158°F)
Mote: -25° to 60°C (-13° to 140°F) with rechargeable batteries
-40° to 70°C (-40° to 158°F) with lithium batteries
Radio Power 12.6 mW (+11 dBm) non-adjustable
Transmission Range Reliable connection to 457.2 m (1,500 ft) line of sight at 1.8 m (6 ft) high
Reliable connection to 609.6 m (2,000 ft) line of sight at 3 m (10 ft) high
Wireless Data Standard IEEE 802.15.4
Radio Operating Frequencies RXW-GPxA-900: 904–924 MHz
RXW-GPxA-868: 866.5 MHz
RXW-GPxA-921: 921 MHz
RXW-GPxA-922: 916–924 MHz
Modulation Employed OQPSK (Offset Quadrature Phase Shift Keying)
Data Rate Up to 250 kbps, non-adjustable
Duty Cycle <1%
Maximum Number of Motes Up to 50 wireless sensors or 336 data channels per one HOBO RX station
Logging Rate Maximum logging interval: 18 hours
Recommended minimum logging interval: 5 minutes year round when using solar power with rechargeable batteries, 10 minutes when using non-rechargeable lithium batteries
Number of Data Channels RXW-GP3A-xxx: 10
RXW-GP4A-xxx: 11
RXW-GP6A-xxx: 16
 
Battery Type/
Power Source
Two AA 1.2V rechargeable NiMH batteries, powered by built-in solar panel or two AA 1.5 V non-rechargeable lithium batteries for operating conditions of -40 to 70°C (-40 to 158°F)
Battery Life With NiMH batteries: Typical 3–5 years when operated in the temperature range -20° to 40°C (-4°F to 104°F) and positioned toward the sun (see Mounting and Positioning the Mote), operation outside this range will reduce the battery service life
With non-rechargeable lithium batteries: 1 year with a 10-minute logging interval
Memory 16 MB
Dimensions RXW-GP3A-xxx sensor length: 53.2 cm (20.9 inches)
RXW-GP4A-xxx sensor length: 68.2 cm (26.9 inches)
RXW-GP6A-xxx sensor length: 98.2 cm (38.7 inches)
Sensor diameter: 3 cm (1.2 inches)
Cable length: 3.5 m (11 ft 6 in)
Mote: 16.2 x 8.59 x 4.14 cm (6.38 x 3.38 x 1.63 inches)
Weight RXW-GP3A-xxx sensor: 351 g (12.4 oz)
RXW-GP4A-xxx sensor: 408 g (14.4 oz)
RXW-GP6A-xxx sensor: 526 g (18.6 oz)
Cable: 180 g (6.5 oz)
Mote: 226 g (7.97 oz)
Materials Sensor: Polycarbonate housing encasing epoxy sealed circuit board
Cable: Polyurethane
Mote: PCPBT, silicone rubber seal
Environmental Rating Mote: IP67, NEMA 6
  • HOBOnet Multi-Depth Soil Moisture Sensor
  • Two AA 1.2V rechargeable NiMH batteries
  • Cable ties
  • Screws
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
HOBOnet Wireless Multi-Depth Soil Moisture Sensor
RXW-GP3A-900
HOBOnet wireless multi-depth soil moisture & temperature sensor, 45cm, 3m cable, solar, 900 MHz (US)
$839.00
Check Availability  
HOBOnet Wireless Multi-Depth Soil Moisture Sensor
RXW-GP4A-900
HOBOnet wireless multi-depth soil moisture & temperature sensor, 60cm, 3m cable, solar, 900 MHz (US)
$959.00
Check Availability  
HOBOnet Wireless Multi-Depth Soil Moisture Sensor
RXW-GP6A-900
HOBOnet wireless multi-depth soil moisture & temperature sensor, 90cm, 3m cable, solar, 900 MHz (US)
$1,115.00
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

From Paddles to Phytoplankton: Studying Vermont’s Wildest Lakes

For six months of the year, Rachel Cray, a third-year PhD student at the Vermont Limnology Laboratory at the University of Vermont, lives between a microscope and her laptop, running data. For the other six months, she is hiking and canoeing four of Vermont’s lakes, collecting bi-weekly water samples. Cray studies algal phenology across four lakes in Vermont, US, that have low anthropogenic stress—or in other words, are very remote.  Funded by the National Science Foundation Career Award to Dr. Mindy Morales, the lakes Cray researches part of the Vermont Sentinel Lakes Program, which studies 13 lakes in the area and, in turn, feeds into the Regional Monitoring Network, which operates in the Northeast and Midwest US.

Read More

Reimagining Water Filtration: How Monitoring and Science Enhance FloWater Filtration Systems

Over 50% of Americans think their tap water is unsafe , according to the Environmental Working Group (EWG). Other recent surveys have found that number to be as high as 70% of persons surveyed.  Whether due to increased public awareness of water quality issues or confusion about how municipal water sources are regulated, there is a clear distrust of tap water in the United States. According to industry expert Rich Razgaitis, CEO and co-founder of the water purification company FloWater, this issue creates a damaging cycle. Razgaitis explained that the health and environmental problems associated with contaminated water aren’t the only issues.  As people become increasingly aware that some tap water is unsafe, they resort to bottled water.

Read More

Monitoring New Hampshire’s Aquatic Ecosystems: Continuous Data Collection in the Lamprey River Watershed

New Hampshire’s aquatic ecosystems provide a range of ecosystem services to the state and region. Resources and services like clean water, carbon storage, climate regulation, nutrient regulation, and opportunities for recreation all depend on New Hampshire’s aquatic ecosystems remaining healthy. Jody Potter, an analytical instrumentation scientist at the University of New Hampshire (UNH), is studying these aquatic ecosystems in hopes of developing an improved understanding of ecosystem services and their interactions with climate change, climate variability, and land use changes. [caption id="attachment_39799" align="alignnone" width="940"] Aquatic sensors in the Merrimack River in Bedford, NH, with I-293 in the background.

Read More