OTT RLS Radar Water Level Sensor

The OTT RLS, non-contact radar level sensor with pulse radar technology is ideal for monitoring in remote or hard to reach locations.

Features

  • Transmit & receive antenna enclosed in a lightweight, durable housing with flat antenna design
  • Easily mounts to a bridge, frame, pipeline, or extension arm
  • Connects to NexSens iSIC data logging system via SDI-12 interface
List Price $$$$$
Your Price Check Price
Usually ships in 1-2 weeks
OTT
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
OTT RLS Radar Water Level Sensor63.109.001.9.2S RLS radar water level sensor, FCC Version (25 GHz), SDI-12 & 4-20mA output
Check Price
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
NexSens 8 Conductor PVC Cable C8P-24-P 8 conductor 24 AWG cable, PVC jacket, priced per ft.
$2.00
Usually ships in 3-5 days
NexSens UW-FL3 Flying Lead Cable Assembly UW-FL3 UW plug to flying lead cable, 3m
$120.00
Usually ships in 3-5 days

The RLS non-contact radar level sensor with pulse radar technology is ideal for monitoring in remote areas and applications where conventional measuring systems are not suitable. The RLS accurately and efficiently measures surface water level With a non-contact distance range of up to 115 feet above water. The sensor is IP67 waterproof and has extremely low power consumption, making it ideal for solar-charged monitoring systems.

The radar level sensor uses a revolutionary level measurement technology, meeting the USGS accuracy requirement of +/-0.01 feet. Two antennas are enclosed in a compact housing and transmit pulses toward the water surface. The time delay from transmission to receipt is proportional to the distance between sensor and water surface. A sampling rate of 16 Hz (16 measurements/second) with 20 second averaging minimizes water surface conditions such as waves and turbulence. The RLS does not require calibration and is unaffected by air temperature, humidity, flood events, floating debris, or contaminated water.

  • (1) Radar level sensor
  • (1) 2-part swivel mount
  • (1) Installation kit - Includes (4) 6x40mm wood screws & (4) plastic plugs
  • (2) Double open-ended wrenches (10x13)
  • (1) Factory acceptance test certificate (FAT)
  • (1) Operations manual
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Coe College Wilderness Field Station Features Education, ARUs and Avian Research

If someone speaks to Jesse Ellis, Assistant Professor of Biology at Coe College and Director of the Wilderness Field Station, they might get interrupted; by a blue-headed vireo. “Bird songs are a big part of data gathering for research here,” says Ellis. “We use automated recording units (ARUs) to record wilderness sounds, especially sounds made by birds and frogs.” The Wilderness Field Station is a teaching-oriented facility. “In addition to our annual summer classes, we also conduct bird studies here including bird counts in transects, and researchers from other colleges come here to do multiple lake samplings,” Ellis adds.

Read More

Digital Mayfly Data Logger Sensor Stations Monitoring Watersheds

For most humans, mayflies seem like a nuisance, hovering over the waterways as we try to enjoy them. However, for anyone hoping to monitor the health of watersheds, mayflies are important aquatic species—and now, a digital version of the mayfly is helping some scientists keep an eye on the water. Research scientist Dr. Scott Ensign , who serves as Assistant Director of the Stroud Water Research Center , spoke to EM about how the digital mayfly technology developed. “ Shannon Hicks is the engineer who started developing the Mayfly six or seven years ago,” explains Dr. Ensign.

Read More

Solar and Wind-Powered, Algae Tracking Boat Trialed in Florida

Time is of the essence when it comes to tracking algal blooms, and people everywhere are looking for solutions. In Florida, scientists from Florida Atlantic University Harbor Branch Oceanographic Institute (HBOI) recently trialed a solar-powered, algae-tracking sail boat developed by Navocean , Inc. Dr. Jordon Beckler of Florida Atlantic University (FAU) directs HBOI's Geochemistry and Geochemical Sensing Lab and spoke to EM about the trials and the boat. "This boat is so amazing when you see it in action," remarks Dr. Beckler. "Navocean originally contacted me a few years back about a demonstration when I was over at my previous institution in West Florida, and we brainstormed some scenarios for employing the boat for harmful algae bloom monitoring.

Read More