OTT RLS Radar Water Level Sensor

The OTT RLS is a non-contact radar level sensor with pulse radar technology to monitor remote or hard-to-reach locations.

Features

  • Transmit & receive antenna enclosed in a lightweight, durable housing with flat antenna design
  • Easily mounts to a bridge, frame, pipeline, or extension arm
  • Connects to NexSens X2 data logging system via SDI-12 interface
List Price $$$$$
Your Price Check Price
Stock Check Availability  
OTT RLS Radar Water Level Sensor

Overview
The OTT RLS is a non-contact radar level sensor with pulse radar technology that is ideal for monitoring in remote areas and applications where conventional measuring systems are unsuitable. The RLS accurately and efficiently measures surface water level with a non-contact distance range of up to 115 feet above the water. The sensor is IP67 waterproof and has extremely low power consumption, making it ideal for solar-charged monitoring systems.

Revolutionary
The radar level sensor uses a revolutionary level measurement technology, meeting the USGS accuracy requirement of +/-0.01 feet. Two antennas are enclosed in a compact housing and transmit pulses toward the water surface. The time delay from transmission to receipt is proportional to the distance between the sensor and the water surface. A sampling rate of 16 Hz (16 measurements/second) with 20-second averaging minimizes water surface conditions such as waves and turbulence. The RLS does not require calibration and is unaffected by air temperature, humidity, flood events, floating debris, or contaminated water.

  • (1) Radar level sensor
  • (1) 2-part swivel mount
  • (1) Installation kit - Includes (4) 6x40mm wood screws & (4) plastic plugs
  • (2) Double open-ended wrenches (10x13)
  • (1) Factory acceptance test certificate (FAT)
  • (1) Operations manual
Questions & Answers
Does the sensor have to be connected to a data logger?
Yes, the sensor does not have logging capabilities and needs to be integrated with a data logger. Sensor output options are SDI-12, SDI-12 via RS-485 and 4-20mA.
What is the difference between radar and ultrasonic sensing technologies?
While ultrasonic sensors emit high frequency (20 kHz to 200 kHz) acoustic waves, radar sensors use radio-frequency signals (1GHz to 60 GHz) and readings are generally less affected by pressure, temperature and moisture changes.
How is the level sensor installed?
The radar level sensor is mounted to a structure so that the radar beam is perpendicular to the surface of the water. A guide for installation and site selection can be found here: https://www.fondriest.com/pdf/ott_rls_install.pdf
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
OTT RLS Radar Water Level Sensor
6310900192S
RLS radar water level sensor, FCC Version (25 GHz), SDI-12 & 4-20mA output
Check Price
Check Availability  
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Thin Ice: Year-Long Monitoring in Missouri Reservoirs

The value of multi-lake studies is well understood by international organizations like the Global Lake Ecological Observatory Network (GLEON) and the scientists who work tirelessly to provide data to the larger network. Rebecca North, an associate professor at the University of Missouri-Columbia , is one of many researchers involved in multi-lake research initiatives and conducting research locally in her home state. Having been born and raised on the shore of Lake Ontario, North grew up in a community that revolved around water. She also saw firsthand one of the worst water quality bodies of the world, the Bay of Quinte, decline throughout her lifetime.

Read More

Duality of Science: The Importance of Science Communication for Promoting Change

It is no secret that in today's world, most scientists do not stick exclusively to science–they must be educators, communicators, and advocates. The looming threats facing the planet's climate and the growing distrust in science by the public have forced scientists to expand and improve their capacity for science communication to the world.  From repeatedly testifying before the U.S. Congress to winning an Emmy as the Chief Scientific Advisor for an award-winning nature documentary, marine ecologist James W. Porter has been thrust into the public eye.

Read More

Thin Ice: Monitoring Winter Lake Dynamics at Mohonk Lake

Historically, water quality monitoring during the winter has been difficult and often avoided altogether—however, monitoring throughout the year can highlight the influence of various environmental stressors and track the changes systems undergo during the winter. In particular, long-term monitoring efforts in systems like Mohonk Lake can underline the effects of climate change and acid rain. David Richardson, a professor of biology at the  State University of New York (SUNY) at New Paltz , spends his time outside of the classroom monitoring the nearby watersheds. After getting his engineering undergraduate degree, Richardson realized he wasn't interested in the typical job offerings and applied to an ecological science graduate program at the University of Maryland.

Read More