OTT RLS Radar Water Level Sensor
Features
- Transmit & receive antenna enclosed in a lightweight, durable housing with flat antenna design
- Easily mounts to a bridge, frame, pipeline, or extension arm
- Connects to NexSens X2 data logging system via SDI-12 interface
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The OTT RLS is a non-contact radar level sensor with pulse radar technology that is ideal for monitoring in remote areas and applications where conventional measuring systems are unsuitable. The RLS accurately and efficiently measures surface water level with a non-contact distance range of up to 115 feet above the water. The sensor is IP67 waterproof and has extremely low power consumption, making it ideal for solar-charged monitoring systems.
Revolutionary
The radar level sensor uses a revolutionary level measurement technology, meeting the USGS accuracy requirement of +/-0.01 feet. Two antennas are enclosed in a compact housing and transmit pulses toward the water surface. The time delay from transmission to receipt is proportional to the distance between the sensor and the water surface. A sampling rate of 16 Hz (16 measurements/second) with 20-second averaging minimizes water surface conditions such as waves and turbulence. The RLS does not require calibration and is unaffected by air temperature, humidity, flood events, floating debris, or contaminated water.
- (1) Radar level sensor
- (1) 2-part swivel mount
- (1) Installation kit - Includes (4) 6x40mm wood screws & (4) plastic plugs
- (2) Double open-ended wrenches (10x13)
- (1) Factory acceptance test certificate (FAT)
- (1) Operations manual
In The News
Data-Driven Decisions: Tracking Sediment during the Klamath Dam Removal
The largest dam removal in U.S. history, the deconstruction of the Klamath Dam is slated to begin this summer. The project includes four dams along the Klamath River with the first and smallest dam, Copco #2, scheduled for removal first. As each of the dams are torn down, scientists and consultants will keep a close eye on the state of the Klamath River downstream to assess the impact of undamming the river. 
 
Shawn Hinz, managing partner and environmental toxicologist with Gravity Consulting , has been involved with the Klamath Dam project for over a decade. Hinz was a part of these earlier steps, representing the academic stakeholder position as a graduate student sitting on a board of other stakeholders.
Read MoreFrom the Tap: Source Water Monitoring for Public Health
In regions with historically secure access to clean drinking water, few think about the work that goes into ensuring that the water they fill their cups with is safe. In reality, millions of dollars are invested in the infrastructure, equipment and teams involved in converting source water into drinking water. 
 
While all the work that goes into providing clean water often goes unnoticed, analysts like Michele Gilkerson, a water research analyst with the City of Columbus Division of Water, know exactly how much goes into securing safe water for millions of people. 
 
Gilkerson started with Battelle Memorial Institute in 1991 in their water ecology section. There, she saw how interesting source water monitoring could be, even though it isn’t often spotlighted in the environmental sector.
Read MoreChoosing the Right Water Quality Monitoring Systems Is Crucial for Stantec Inc.
Data is king when it comes to water quality monitoring. It is not merely the type of data being collected that matters but also how that data is stored, processed and presented. When Joseph Kamalesh, a project manager with Stantec Consulting Services Inc. , needs to find the right equipment for large client-based projects, he knows to keep these factors in mind. 
 
Joseph has a background in water quality and water flow monitoring instrumentation, which he continues to focus on at Stantec. During college and his early career, Joseph gained experience with water instrumentation, consisting primarily of on-site wastewater sampling and sampling small systems.
Read More