PME miniWIPER for miniDOT Logger

The miniWIPER is a self-contained, completely submersible wiping device that can be used with a variety of sensors including the miniDOT Logger.

Features

  • Completely submersible to 25m depths
  • Can operate for up to 3-months at 1-hour wipe interval
  • Software is supplied to change the wiping interval and check battery voltage
List Price $$$$$
Your Price Check Price
Usually ships in 1-2 weeks
PME
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
PME miniWIPER for miniDOT Logger5958 miniWIPER anti-fouling sensor wiper for miniDOT Logger, includes copper plate
Check Price
Usually ships in 1-2 weeks
PME miniWIPER for miniDOT Logger
5958
miniWIPER anti-fouling sensor wiper for miniDOT Logger, includes copper plate
Usually ships in 1-2 weeks
Check Price
ImagePart#Product DescriptionPriceStockOrder
PME USB Communication Cable 7286 Communication cable, USB to micro USB
Check Price
In Stock
PME miniDOT Dissolved Oxygen Logger 7450 miniDOT dissolved oxygen & temperature logger
Check Price
In Stock
PME miniDOT Wiper Bracket Attachment 5945 miniDOT bracket attachment for miniWIPER
Check Price
Usually ships in 1-2 weeks
PME miniWIPER for miniDOT Logger Maintenance Kit 5980 miniWIPER maintenance kit for miniDOT Logger, includes wrench, timing belt, pulley brush & (2) O-rings
Check Price
Usually ships in 1-2 weeks
Communication cable, USB to micro USB
In Stock
Check Price
miniDOT dissolved oxygen & temperature logger
In Stock
Check Price
miniDOT bracket attachment for miniWIPER
Usually ships in 1-2 weeks
Check Price
miniWIPER maintenance kit for miniDOT Logger, includes wrench, timing belt, pulley brush & (2) O-rings
Usually ships in 1-2 weeks
Check Price

The miniWIPER is a self-contained, completely submersible wiping device that can be used with a variety of sensors including the miniDOT Logger. It can be programmed to wipe at various intervals, and is powered from two AA Lithium batteries. A small brush rotates over the sensor in order to perform a complete wipe of the sensor surface, and then rests away from the sensor to allow for accurate and continuous monitoring. The wiper is used as an anti-fouling device and prevents various organisms from growing on the sensor and interfering with data.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Is eradicating Great Lakes sea lamprey an “impossible dream?” Researchers say no

The sea lamprey’s days in the Great Lakes could be numbered. That’s according to one researcher who took one of the first scientific looks at the possibility of sea lamprey eradication in the Great Lakes. So, can you remove enough sea lamprey to make them disappear? “Well the answer is we already have,” said Michael Jones, emeritus professor of fisheries and wildlife at Michigan State University. “Then there’s the obvious question: Why are they still here?”  While multiple gaps in current management techniques, like sea lamprey poisons called lampricides, could account for sea lamprey’s persistence in the Great Lakes, new technology could help sea lamprey managers eliminate inaccessible populations.

Read More

America’s Elusive Crayfish and the eDNA that’s Finding Them

The Shasta crayfish and signal crayfish are two similar looking arthropods on two very different ecological trajectories. As one spreads in abundance, originating in the Pacific Northwest and spreading throughout the world, the other has been reduced to a handful of remaining populations spread throughout one river and its tributaries.  Pacifastacus leniusculus - the signal crayfish - has met few obstacles in its widely successful expansion from the Pacific Northwest southward in California and Nevada, as well as Europe and Japan. By some expert accounts, it has reached invader status. And while invasive species are rarely good for the surrounding food webs, it’s Pacifastacus fortis - the Shasta crayfish - that’s suffered the most at the signal crayfish’s fortune.

Read More

Low Tech, Low Cost Buoys Coming to Maine’s Shellfish Farmers

What might the Maine Aquaculture Innovation Center’ s (MAIC) buoy offer that other governments and university monitoring equipment lack? The center doesn’t have MicroCAT recorders or autonomous acoustic sensing gliders. It’s not deploying hundred-thousand-dollar oceanographic mooring lines gathering massive amounts of data. So what can MAIC’s three-foot prototype buoy offer that others can’t? It’s easy to clean and costs very little. “One of the big issues for putting anything in the water is biofouling,” said Josh Girgis, an engineer at MAIC based at the University of Maine’s Darling Marine Center (DMC). “If you put a sensor in, you can only expect it to work until something starts growing on it.

Read More