Solinst Model 107 TLC Meters
Features
- Accuracy is to the greater of 100 uS or 5% of reading
- LCD simultaneously displays temperature & conductivity
- Built with rugged Solinst reel and accurate flat-tape marked every 1/100' or each mm
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Solinst TLC Meter is ideal for profiling conductivity and temperature in wells and open water. It displays accurate measurements of conductivity and temperature on a convenient LCD display. Conductivity measurements are read from 0-80,000 uS/cm with readings giving accuracy of 5% of reading or 100 uS (whichever is greater). Water level and probe depth measurements are read off the Solinst durable PVDF flat tape, which is accurately laser marked every 1/100 ft or each millimeter. Tape lengths are now available up to 1000 ft (300m).
Design
The high quality PVDF flat tape reels smoothly, remains flexible and hangs straight in the well, irrespective of temperature. The flat tape is mounted on a sturdy, well-balanced Solinst reel, with a convenient battery drawer for the 9 Volt alkaline battery. Permanent laser markings each 1/100 ft or millimeter allow accurate readings. Stranded stainless steel conductors and copper coated stainless steel conductors resist corrosion, provide strength and are non-stretch. They make the tape easy to repair and splice. The dog-bone design reduces adherence to wet surfaces.
Mechanics
The Solinst TLC Meter uses a ‘smart’ conductivity sensor with platinum electrodes to measure conductivity. The conductivity is displayed on the screen along with the associated temperature measurement. The ‘smart probe’ displays conductivity that has been standardized to 25 C, i.e. Specific Conductance (displayed as EC). The conductance temperature coefficient is 2.0% per C. Calibration is simple, using 1413 uS, 5000 uS, 12,880 uS, and/or 80,000 uS solutions for 1, 2, 3, or 4 point manual conductivity calibrations.
- (1) Model 107 TLC meter
- (1) Tape guide/datum
In The News
Water Conservation and Smart Growth in Texas
As states face annual droughts and water use continues to grow in order to meet population and production demands, water conservation is essential to protecting natural resources and long-term reliance. 
 
Over the years, conserving water has become more necessary as the world’s natural resources continue to be strained in order to meet needs. As a result, water conservation consultants have filled an essential niche in resource management. 
 
Eddie Wilcut, the Water &; Energy Efficiency Practice Leader at Plummer , started his career in the Air Force, where he took some classes focusing on water resources. In those classes, Wilcut read Aldo Leopold’s “A Sand County Almanac,” and a specific line has stuck with him for the past 26 years.
Read MoreIt’s a Buoy! Highlighting the New NexSens XB-200 Data Buoy
As scientists seek to better understand aquatic ecosystems, utilizing small data buoys to monitor offshore and cover more water is becoming commonplace. The new NexSens Technology XB-200 data buoy was designed for inland and coastal monitoring applications. 
 
Although compact, the platform is designed with adequate space for multiple sensors and measurement electronics. When configured with the NexSens X3 data logger with IoT connectivity, internal batteries, solar panels, select sensors, and other accessories, the new buoy provides an off-the-shelf solution for any monitoring project. 
 
The new buoy concept was developed by the NexSens product development team with significant user input.
Read MorePredicting and Monitoring Ice Weather Events: The Great Lakes Approach to Ice Research
Ice cover on the Great Lakes provides numerous recreational and economic opportunities, including ice fishing, snowmobile charters, and ice caves on the lakes. Unfortunately, declining ice cover and increasing related weather events due to climate change, as well as other environmental stressors, have put such opportunities at risk. 
 
 Historically, understanding winter weather has been difficult largely due to a lack of observations and, as a result, communities surrounding the Great Lakes have been left underprepared for extreme events.
Read More