Solinst Model 107 TLC Meters
Features
- Accuracy is to the greater of 100 uS or 5% of reading
- LCD simultaneously displays temperature & conductivity
- Built with rugged Solinst reel and accurate flat-tape marked every 1/100' or each mm
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
The Solinst TLC Meter is ideal for profiling conductivity and temperature in wells and open water. It displays accurate measurements of conductivity and temperature on a convenient LCD display. Conductivity measurements are read from 0-80,000 uS/cm with readings giving accuracy of 5% of reading or 100 uS (whichever is greater). Water level and probe depth measurements are read off the Solinst durable PVDF flat tape, which is accurately laser marked every 1/100 ft or each millimeter. Tape lengths are now available up to 1000 ft (300m).
The high quality PVDF flat tape reels smoothly, remains flexible and hangs straight in the well, irrespective of temperature. The flat tape is mounted on a sturdy, well-balanced Solinst reel, with a convenient battery drawer for the 9 Volt alkaline battery. Permanent laser markings each 1/100 ft or millimeter allow accurate readings. Stranded stainless steel conductors and copper coated stainless steel conductors resist corrosion, provide strength and are non-stretch. They make the tape easy to repair and splice. The dog-bone design reduces adherence to wet surfaces.
The Solinst TLC Meter uses a ‘smart’ conductivity sensor with platinum electrodes to measure conductivity. The conductivity is displayed on the screen along with the associated temperature measurement. The ‘smart probe’ displays conductivity that has been standardized to 25 C, i.e. Specific Conductance (displayed as EC). The conductance temperature coefficient is 2.0% per C. Calibration is simple, using 1413 uS, 5000 uS, 12,880 uS, and/or 80,000 uS solutions for 1, 2, 3, or 4 point manual conductivity calibrations.
- (1) Model 107 TLC meter
- (1) Tape guide/datum
In The News
The Birds and the Bees: Understanding the Diversity of Pollinators
Pollinators of all shapes and sizes are vital to ecosystems around the world. From the wide array of food people eat to the diversity of life around the planet, life would be very different without them. Pollinators are organisms that help carry pollen from one plant to another, and over 350,000 species can be found worldwide, according to The California Department of Fish and Wildlife . With the strong relationship between plants and pollinators, losing either would have detrimental impacts on ecosystems. 
 
 Over millions of years, both plants and pollinators have evolved alongside each other and formed unique adaptations that allow them to work together, expediting and enhancing the process of pollination.
Read MoreMonitoring Volcanic Activity in Hawaii: Safeguarding Public Safety with the Hawaiian Volcano Observatory
The eight main Hawaiian Islands are made up of 15 volcanoes, six of which are active as of 2023 . Many locals live on or near an active volcano, making the monitoring and understanding of volcanic activity a core issue of public safety on the islands. Organizations like the Hawaiian Volcano Observatory (HVO) have spent decades monitoring the islands’ volcanoes to protect the public, develop a deeper understanding of the islands’ volcanos and forecast eruptions whenever possible. 
 
Even those who live away from edifices like Mauna Loa often have connections to the people living near the volcano.
Read MoreCrystal Clear Problems: Impacts of Water Transparency in Aquatic Ecosystems
From crystal clear alpine lakes to muddy rivers and boggy swamps, water transparency is an easily observable water quality parameter to anyone who takes a few moments to peer into the (sometimes) murky depths. Water transparency varies dramatically based on the location of bodies of water among different watershed environments, but it can also change quickly due to a variety of internal and external factors. 
 
 At Miami University (OH), the Global Change Limnology Lab explores the many ways that water transparency impacts aquatic ecosystems. Operational for nearly 20 years, the lab trains undergraduate and graduate students and has conducted work from the midwest Great Lakes to Alaska, South America and New Zealand. 
 
 The Global Change Limnology Lab, headed by Dr.
Read More