Turner Designs C-FLUOR Submersible Sensors

The Turner Designs C-FLUOR Submersible Sensors are sensitive, extremely low power single wavelength in-situ fluorescence and turbidity probes available in several optical configurations spanning a broad range of applications.

Features

  • Analog 0-5 VDC or digital RS-232 output options
  • Factory calibrated and includes a calibration certificate
  • Titanium construction with 2000m depth rating
List Price $$$$$
Your Price Check Price
Stock Check Availability  

Overview
Turner Designs C-FLUOR Submersible Sensors are sensitive, extremely low power single wavelength in situ fluorescence and turbidity probes available in several optical configurations spanning a broad range of applications. Factory-calibrated, each C-FLUOR ships with a calibration certificate used to convert the output signal to a specific concentration estimate. The Titanium construction allows for a depth rating of 2,000 meters as well as superior resistance to corrosion.

Compatibility
Analog C-FLUOR Probes are pin-compatible with Cyclops Sensors, so they are easily integrated into many of the same third-party systems that accept 0-5V signals. Digital C-FLUOR Probes can be integrated with data loggers that accept ASCII data strings.

Questions & Answers
At what distance from the end of the C-FLUOR sensor is the measurement taken?
The C-FLUOR can detect materials as far away as 3 inches from the sensor head, which is why Turner Designs recommends at least a 3 inch (7.62 cm) clearance from the optical head when taking measurements. An exception to this would be if you are using the shade cap, as the shade cap is designed as an optical “backstop” for the sensor.
Can C-FLUOR be integrated into CTDs, ROVs, or AUVs?
Yes, C-FLUOR can be integrated with any AUV, ROV or system that will accept a 0 to 5 VDC analog input and has a maximum depth rating of 600 meters.
What is the difference between the C-FLUOR and Cyclops-7F fluorometers?
C-FLUOR sensors come standard with a titanium housing and factory calibration. The depth rating is also improved to 2000m. C-FLUOR sensors have a single gain setting, while the Cyclops-7F has a wider linear range with three gain settings.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Turner Designs C-FLUOR Submersible Sensors
2120-000-T
C-FLUOR turbidity sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-T-232
C-FLUOR turbidity sensor, RS-232
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-C
C-FLUOR chlorophyll sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-C-232
C-FLUOR chlorophyll sensor, RS-232
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-D
C-FLUOR red excitation chlorophyll sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-R
C-FLUOR rhodamine WT sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-R-232
C-FLUOR rhodamine WT sensor, RS-232
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-F
C-FLUOR fluorescein sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-P
C-FLUOR blue-green algae (phycocyanin) sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-E
C-FLUOR blue-green algae (phycoerythrin) sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-U
C-FLUOR colored dissolved organic matter (CDOM) sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-U-232
C-FLUOR colored dissolved organic matter (CDOM) sensor, RS-232
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-O
C-FLUOR crude oil sensor, 0-5 VDC
Check Price
Check Availability  
Turner Designs C-FLUOR Submersible Sensors
2120-000-B
C-FLUOR optical brighteners sensor, 0-5 VDC
Check Price
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

The Birds and the Bees: Understanding the Diversity of Pollinators

Pollinators of all shapes and sizes are vital to ecosystems around the world. From the wide array of food people eat to the diversity of life around the planet, life would be very different without them. Pollinators are organisms that help carry pollen from one plant to another, and over 350,000 species can be found worldwide, according to The California Department of Fish and Wildlife . With the strong relationship between plants and pollinators, losing either would have detrimental impacts on ecosystems.  Over millions of years, both plants and pollinators have evolved alongside each other and formed unique adaptations that allow them to work together, expediting and enhancing the process of pollination.

Read More

Monitoring Volcanic Activity in Hawaii: Safeguarding Public Safety with the Hawaiian Volcano Observatory

The eight main Hawaiian Islands are made up of 15 volcanoes, six of which are active as of 2023 . Many locals live on or near an active volcano, making the monitoring and understanding of volcanic activity a core issue of public safety on the islands. Organizations like the Hawaiian Volcano Observatory (HVO) have spent decades monitoring the islands’ volcanoes to protect the public, develop a deeper understanding of the islands’ volcanos and forecast eruptions whenever possible. Even those who live away from edifices like Mauna Loa often have connections to the people living near the volcano.

Read More

Crystal Clear Problems: Impacts of Water Transparency in Aquatic Ecosystems

From crystal clear alpine lakes to muddy rivers and boggy swamps, water transparency is an easily observable water quality parameter to anyone who takes a few moments to peer into the (sometimes) murky depths. Water transparency varies dramatically based on the location of bodies of water among different watershed environments, but it can also change quickly due to a variety of internal and external factors. At Miami University (OH), the Global Change Limnology Lab explores the many ways that water transparency impacts aquatic ecosystems. Operational for nearly 20 years, the lab trains undergraduate and graduate students and has conducted work from the midwest Great Lakes to Alaska, South America and New Zealand.  The Global Change Limnology Lab, headed by Dr.

Read More