Turner Designs Cyclops-7F Submersible Sensors

The Turner Designs Cyclops-7F submersible sensor is a high performance and compact fluorometer designed for integration into any platform that supplies power and data logging.

Features

  • Interfaces easily with most data collection platforms using 0-5 VDC output
  • Very low power consumption allows for extended remote deployments
  • Interfaces with DataBank Handheld Data Logger and Cyclops-7 Logger
List Price $$$$$
Your Price Check Price
Stock Check Availability  
Turner Designs Cyclops-7F Submersible Sensors

Overview
The Turner Designs Cyclops-7F submersible fluorometer sensors are designed for integration into remote data collection and telemetry platforms. The sensors offer a unique combination of performance and size, making them very attractive for freshwater, coastal, and oceanographic environments. Cyclops-7F sensors are configured and factory scaled for the specific analysis of turbidity, chlorophyll, phycocyanin, phycoerythrin, rhodamine dye, fluorescein dye, CDOM, crude oil, optical brighteners, PTSA dye, or tryptophan.

Durable
The Cyclops-7F sensor features a locking sleeve Impulse connector with cable options available from 2 feet to 50 meters. The rugged stainless steel construction is designed to withstand most environmental conditions. Common applications include turbidity dredge monitoring, algal bloom notification, and dye tracer studies.

Questions & Answers
When should I use a Shade Cap?
Turner Designs recommends use of the shade cap, as it provides a fixed distance for sample measurement and minimizes affects from ambient light. The Shade Cap also offers protection for the optics and prevents damage from deploying, recovering, or transporting the instrument, in fast-flowing environments, and/or from bottoming out in shallow environments.
What is the difference between the C-FLUOR and Cyclops-7F fluorometers?
C-FLUOR sensors come standard with a titanium housing and factory calibration. The depth rating is also improved to 2000m. C-FLUOR sensors have a single gain setting, while the Cyclops-7F has a wider linear range with three gain settings.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Turner Designs Cyclops-7F Submersible Sensors
2110-000-T
Cyclops-7F turbidity sensor, stainless steel housing
Check Price
Check Availability  
Turner Designs Cyclops-7F Submersible Sensors
2110-000-C
Cyclops-7F chlorophyll sensor, stainless steel housing
Check Price
Check Availability  
Turner Designs Cyclops-7F Submersible Sensors
2110-000-R
Cyclops-7F rhodamine WT sensor, stainless steel housing
Check Price
Check Availability  
Turner Designs Cyclops-7F Submersible Sensors
2110-000-F
Cyclops-7F fluorescein sensor, stainless steel housing
Check Price
Check Availability  
Turner Designs Cyclops-7F Submersible Sensors
2110-000-P
Cyclops-7F blue-green algae (phycocyanin) sensor, stainless steel housing
Check Price
Check Availability  
Turner Designs Cyclops-7F Submersible Sensors
2110-000-U
Cyclops-7F colored dissolved organic matter (CDOM) sensor, stainless steel housing
Check Price
Check Availability  
Turner Designs Cyclops-7F Submersible Sensors
2110-000-G
Cyclops-7F refined fuels sensor, stainless steel housing
Check Price
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Wildfire smoke alters a lake's ecology from the top to the bottom of the food chain

Wildfires have been big news the last couple of years. Australia’s wildfires in 2019 and 2020 and the Amazon rainforest fires in 2021 made headlines around the world. The American west has had record-breaking burns in recent years, blanketing cities in dangerous amounts of smoke and sending haze across the continent to the east coast. While smoke has clear and apparent effects on the sky, new research finds it changed the ecology of Castle Lake, a freshwater lake in California, in 2018. “There are some studies that have analyzed the effect of human health in respiration with the smoke of wildfire,” said Facundo Scordo, a postdoctoral researcher at the Global Water Center of the University of Nevada—Reno.

Read More

Combating Water Insecurity in Saskatchewan with Real-Time Data

The prairies of Saskatchewan can be described as one of the least water-secure parts of Canada, making water quality monitoring essential for informed resource management in a region already facing water insecurity. While natural physical properties worsen some of the poor water quality conditions in the region, others are connected to land use. Having grown up spending summers on the shores of Lake Huron, Helen Baulch, an associate professor at the School of Environment and Sustainability at the University of Saskatchewan , has always been dedicated to the protection of water resources. Looking back fondly at her childhood playing along the shore, Baulch also recalls the invasion of quagga mussels during her teenage years and watching the lake change as a result.

Read More

Seametrics Turbo Turbidity Logger: Boost your Turbidity Monitoring

The Seametrics Turbo Turbidity Logger is a self-cleaning turbidity sensor capable of internally logging over 260,000 data records. The sensor enables researchers, compliance officers, and contractors to monitor turbidity in various applications, from construction and dredging sites to wastewater effluent.  Due to its narrow width, this device can be deployed in a range of areas, from small well spaces to rivers and streams. The stainless steel housing and built-in wiper allow the sensor to withstand long-term deployments and reduce the need for maintenance trips.  The logger accurately records temperature and turbidity up to a depth of 50 meters.

Read More