YSI 2002 Galvanic Dissolved Oxygen Sensor

The YSI 2002 galvanic dissolved oxygen sensor provides instant and reliable DO readings. It includes the 5913 yellow 1.25 mil PE membrane kit.

Features

  • Galvanic sensors have no warm-up time and are immediately ready for calibration and use
  • Easily inserts into the probe module and cable assembly
  • Compatible with YSI 5912, 5913, or 5914 screw-on cap membranes
List Price $210.00
Your Price $199.50
Stock 6AVAILABLE
  • 6-month warranty
  • (1) YSI 2002 DO module
  • (1) 5913 cap membrane kit
  • (1) Instruction sheet
  • (1) Hex wrench
  • (1) Set screw
Questions & Answers
How does a Galvanic DO Sensor work?

In a Galvanic sensor, the cathode is silver and the anode is zinc. The two materials are dissimilar enough to self-polarize and reduce oxygen molecules without an applied voltage. This is similar to how a battery works. The system uses a meter to read the electrical signal and the signal is proportional to the amount of oxygen passing through the membrane.

Why can the Galvanic sensor be used immediately after it is powered on?

The Galvanic sensor contains silver and zinc. These two materials are different enough to self-polarize without added voltage. This allows them to be used immediately instead of waiting on the anode and cathode to polarize.

I am having trouble getting an accurate reading, what can I be doing incorrectly?

The steady-state sensor reduces oxygen, meaning it is flow dependent. The sensors require stirring or sample movement to produce accurate readings.

Is there a blue 2.0 mil cap available for the 2002 galvanic DO sensor?

Yes, part 605914, is a 2.0 mil cap that can be used with the 2002 galvanic dissolved oxygen sensor.

Please, mind that only logged in users can submit questions

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 2002 Galvanic Dissolved Oxygen Sensor
605202
2002 galvanic DO sensor with yellow 1.25 mil PE membrane kit, Pro Series
$199.50
6 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Environmental Dredging and Remedial Construction

Though dredging is often painted in a negative light, dredging initiatives and projects are often conducted to improve environments, begin recovery periods for water beds contaminated with toxins, and reinvigorate ecological systems and habitats. Many of the technicians and engineers who plan and execute dredging projects are dedicated to balancing the economic benefits of dredging with protecting the environment. Sevenson Environmental Services Inc.  provides sediment remediation as one of many key services offered to help restore natural environments. Steven Shaw spent more than a decade working as an engineer on various dredging projects before finding his way to Sevenson eight years ago.

Read More

Caring for the Chesapeake: Supporting the Iconic Bay Starts with Good Monitoring Data

The Chesapeake Bay is enormous: the Bay and its tidal tributaries have 11,684 miles of shoreline—more than the entire U.S. west coast. It is the largest of more than 100 estuaries in the United States and the third largest in the world. The Bay itself is about 200 miles long, stretching from Havre de Grace, Maryland, to Virginia Beach, Virginia. But the Chesapeake Bay isn’t just enormous--it’s enormously important. The  Chesapeake Bay Program  reports that its watershed covers about 64,000 square miles and is home to more than 18 million people, 10 million of which live along or near the Bay’s shores.

Read More

Treating Harmful Algal Blooms: A Natural Progression

Some of us happen upon the subject of our life’s work by accident, some of us are born into it, and some of us ease into it over time. For Tom Johengen, Research Scientist for Cooperative Institute for Great Lakes Research (CIGLR) and Director of Michigan Sea Grant , choosing to study Harmful Algal Blooms (HAB) was “a natural progression” from his days as a grad student investigating best management practices for controlling nonpoint source nutrient pollution. “I’ve been the research scientist with CIGLR since my postdoc in 1991, 31 years, and I’ve been the Director of Michigan Sea Grant for the past 3 years. When I began my postdoc with CIGLR we were just starting to study the impacts of the recently invaded zebra mussels.

Read More