605202

YSI 2002 Galvanic Dissolved Oxygen Sensor

YSI 2002 Galvanic Dissolved Oxygen Sensor

Description

The YSI 2002 galvanic dissolved oxygen sensor provides instant and reliable DO readings. It includes the 5913 yellow 1.25 mil PE membrane kit.

Features

  • Galvanic sensors have no warm-up time and are immediately ready for calibration and use
  • Easily inserts into the probe module and cable assembly
  • Compatible with YSI 5912, 5913, or 5914 screw-on cap membranes
More Views
List Price
$185.00
Your Price
$175.75
In Stock

Shipping Information
Return Policy
Why Buy From Fondriest?
Notable Specifications:
  • 6-month warranty
What's Included:
  • (1) YSI 2002 DO module
  • (1) 5913 cap membrane kit
  • (1) Instruction sheet
  • (1) Hex wrench
  • (1) Set screw
Image Part # Product Description Price Stock Order
YSI 2002 Galvanic Dissolved Oxygen Sensor 605202 2002 galvanic DO sensor with yellow 1.25 mil PE membrane kit, Pro Series
$175.75
In Stock
Image Part # Product Description Price Stock Order
YSI 5913 DO Cap Membrane Kit 605913 5913 PE yellow 1.25 mil cap membrane kit, 2002 galvanic sensor
$57.00
In Stock
Additional Product Information:

Questions & Answers

| Ask a Question
How does a Galvanic DO Sensor work?
In a Galvanic sensor, the cathode is silver and the anode is zinc. The two materials are dissimilar enough to self-polarize and reduce oxygen molecules without an applied voltage. This is similar to how a battery works. The system uses a meter to read the electrical signal and the signal is proportional to the amount of oxygen passing through the membrane.
Why can the Galvanic sensor be used immediately after it is powered on?
The Galvanic sensor contains silver and zinc. These two materials are different enough to self-polarize without added voltage. This allows them to be used immediately instead of waiting on the anode and cathode to polarize.
I am having trouble getting an accurate reading, what can I be doing incorrectly?
The steady-state sensor reduces oxygen, meaning it is flow dependent. The sensors require stirring or sample movement to produce accurate readings.

Related Products

In The News

Mining Waste Cleanup Reveals Interesting Lake Dynamics

For the past decade or so, Dr. Bernard Laval , a civil engineer with the University of Northern BC in Canada, has been researching Quesnel Lake , a large, deep lake with unusual water dynamics. This allowed him an unusually high level of insight into much of what makes the lake tick—and when Mount Polley Mine (MPM) experienced a breach in 2014, causing materials to be deposited into Quesnel Lake, he already had a sense of what the lake's waters looked like. “Our work was inspired by a desire to improve holistic understanding of lake function to help with fisheries management by BC Ministry of Environment (BC MOE) and Fisheries and Ocean Canada (DFO),” explains Dr. Laval.

Read More

Narragansett Nature: Remote NERR is a leader in salt marsh stressor studies, crab studies and contributions to Rhode Island environmental policies

Unique among the 29 National Estuarine Research Reserves (NERRS), Narragansett Bay National Estuarine Research Reserve (NBNERR ) is made up of four islands: Prudence, Patience, Hope and Dyer. Protecting about 4,400 acres of land and water, NBNERR is a great place to see a variety of coastal habitats. There are upland maritime forests, coastal pine barrens, sandy beaches, cobble shorelines, salt marshes and open grasslands. NBNERR also has excellent hiking, fishing, clamming and bird watching. “If you want to see us, though, you’ll need to hop on a ferry,” says Bob Stankelis , NBNERR Reserve Manager. “Or you’ll have to take a boat. We’re not that easy to get to. But to be honest, that’s one of the big things residents here like about it: its remoteness.

Read More

Acid Rain Data Helping Scientists Tackle Water Quality Issues

Since the 1980s, scientists from the Vermont Department of Environmental Conservation (VT DEC) have been sampling water from acid-impaired ponds and lakes and tracking data related to acidity. The line of inquiry began in response to concerns about acid rain, but DEC scientists now find that the long-term monitoring is not only proving the efficacy of the Clean Air Act but also improving local water quality. Guarding the environment in Vermont Rebecca Harvey is a VT DEC scientist, and monitoring the state's waterways for acidity and other problems falls in part to her. Dr. Harvey corresponded with EM about this work.

Read More