YSI 2003 Polarographic Dissolved Oxygen Sensor

The YSI 2003 polarographic dissolved oxygen sensor provides reliable DO readings and includes the 5908 yellow 1.25 mil PE membrane kit.

Features

  • Dissolved oxygen sensor for the YSI Pro Series handheld meters
  • Easily inserts into the probe module and cable assembly
  • Compatible with YSI 5906, 5908, or 5909 screw-on cap membranes
List Price $229.00
Your Price $217.55
Stock More On The Way   

Overview
The YSI 2003 Polarographic Dissolved Oxygen Sensor is designed for use with the Pro20, Pro20i, Pro1020, Pro2030, and Pro Plus instruments; cables must be ordered separately. The YSI 2003 can be used on 60520 (DO), 6052030 (DO/conductivity), 6051020 (DO/ISE), and 605790 Quatro (DO/conductivity/ISE/ISE) cables.

*The YSI 2003 comes with six membrane caps and a bottle of solution.

  • 1-year warranty
  • (1) YSI 2003 DO module
  • (1) 5908 cap membrane kit
  • (1) Instruction sheet
  • (1) Hex wrench
  • (1) Set screw
Questions & Answers
How does a Polarographic DO sensor work?
In a polarographic sensor, the cathode is gold and the anode is silver. The system is completed by a circuit in the instrument that applies a constant voltage of 0.8 volts to the probe, which polarizes the two electrodes. The sensor operates by detecting a change in this current caused by the variable pressure of oxygen while the potential is held constant at 0.8 V. The more oxygen passing through the membrane and being reduced at the cathode, the greater the signal increases.
Why is the Polarographic sensor warranted for 1 year while the Galvanic is only warranted to 6 months.
Galvanic sensors continually consume the anode, even when the instrument is off. The consumption of the polarographic sensor stops when the instrument is turned off, giving it a longer sensor life.
Is this sensor approved by the EPA?
Yes, the proven technology of the steady-state sensor is approved by the US EPA for compliance monitoring and reporting.
How often should the dissolved oxygen sensor be calibrated?
The DO readings should be verified before each use, and a YSI recommends performing a 1-point calibration before each use to maintain accurate readings. You can follow the instructions in the calibration guide for dissolved oxygen sensors. 
What is the main difference between the yellow vs blue caps for the YSI 2003 polarographic sensor?
The YSI 2003 polarographic DO sensor can accomodate either a blue or yellow cap. The yellow, 1.25 mil PE cap has an 8 second response time and requires a flow rate of 6 inches/second over the sensor membrane. The blue 2.0 mil PE cap has a 17 second response time and requires a flow rate of 3 inches/second. 
How often should the membrane cap be replaced on electrochemical dissolved oxygen sensors?
YSI recommends replacing the membrane cap every 2-8 weeks.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 2003 Polarographic Dissolved Oxygen Sensor
605203
2003 polarographic DO sensor with yellow 1.25 mil PE membrane kit, Pro Series
Your Price $217.55
More On The Way  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Mississippi Gulf Coast fish kill expected to continue

Officials at the Mississippi Department of Marine Resources say that a recent fish kill along the state’s Gulf coast is the largest they’ve seen, according to KVUE. The fish kill has brought dead crabs, eels and stingrays ashore. Beachgoers were disturbed by the large-scale kill, but experts explained that conditions this year were to blame. With higher temperatures and low dissolved oxygen near the sea floor, creatures that live there were more likely to be affected. The fish kill, beginning July 1, was the first of 2013 for the area. It was expected to last several more days, but lessen over that period.

Read More

Collecting Data at the Top of the World: How Scientists Retrieve Glacial Ice Cores

A helicopter touches down in the small town of Sicuani, Peru, at an elevation of 11,644 feet. Earlier that day, a boxcar brought fuel, drills, food, and other equipment for a glacial expedition. The year is 1979, and glaciologist Lonnie Thompson is preparing to lead a team to the Quelccaya ice cap in hopes of becoming the first scientists to drill an ice core sample from this glacier. The only problem? The glacier is located at 19,000 feet in one of the most remote areas of the world. The helicopter takes off from the town, but the thin atmosphere at that elevation does not allow it to safely touch down on the ice– due to the aircraft’s weight, and it becomes unstable when the air is less dense.

Read More

Spring 2024 Environmental Monitor Available Now

In the Spring 2024 edition of the Environmental Monitor, we showcase researchers from across the world and the importance of monitoring natural disasters and the various symptoms of climate emergencies. Tracking the impacts of wildfires in Canada to air pollution in New York , this latest edition showcases how the influence of climate change and natural disasters transfers across state and country lines. Researchers spent the year gathering data, predicting disasters, and monitoring as a means of managing and understanding natural disasters. Our writers sought out environmental professionals dedicated to protecting human health , minimizing the impacts of natural disasters and creating monitoring systems.

Read More