Geolux Non-Contact Flow Sensor
Features
- Contactless water level and surface velocity measurement
- Integrated discharge (flow) calculation
- RS-232, RS-485 Modbus, SDI-12, analog 4-20 mA interfaces in all models
- Expedited repair and warranty service
- Lifetime technical support
- More
The Geolux non-contact flow sensor has an integrated radar surface velocity and level sensor for contactless velocity, level, and discharge (flow) measurements.
Contactless radar technology enables quick and simple sensor installation above the water surface with minimum maintenance. Calculation of the total flow discharge is internally implemented within the instrument by combining surface velocity measurement, water level measurement, and a configured cross-section of the river or channel. Defining the measurement parameters such as profile cross-section, material of the edges, location of the sensor above the water, and all other instrument settings can be easily set with the Geolux configuration application using any available communication interface.
General Specifications
Detection Distance: 15m
Speed Range: 0.02m/s to 15m/s
Speed Resolution: 0.001m/s
Speed Accuracy: 1%
Level Resolution: 0.5mm
Level Accuracy: +/-2mm
IP Rating: IP68
Electrical & Mechanical
Input Voltage: 9 to 27 VDC
Power Consumption: 1,3 W operational; 0,235 W standby
Maximal Current: < 750 mA
Temperature Range: -40 °C to +85 °C (without heating or coolers)
Enclosure Dimensions: 150mm x 200mm x 250mm
Interface
Serial Interface: 1 x serial RS-485 half-duplex; 1 x serial RS-232 (two wire interface)
Baud Rate: 9600 bps to 115200 bps
Serial Protocols: Modbus, GLX-NMEA
Other Protocols: SDI-12
Analog Output: 4-20 mA, programmable velocity, level or flow
Certificates
EN 61326-1:2013
ETSI EN 301 489-1
ETSI EN 301 489-3
EN 301 489-3 V2.1.1:2019
EN 301 489-1 V2.2.3:2019
EN 300 440 V2.2.1:2018
EN 62368-1:2014+A11:2007;
EN 60950-22:2017
EN 61010-1:2010
FCC Part 15 class B
ISED RSS211
In The News
Lake Malawi: A Treasure to Protect
Lake Malawi (also known as Lake Nyasa and Lake Niassa) doubles as a Rift Valley Lake and one of the seven African Great Lakes. Due to its unique biodiversity, it’s a great place to conduct limnological studies. Harvey Bootsma is a professor for the School of Freshwater Sciences at the University of Wisconsin-Milwaukee and has had an interest in limnology ever since he was a kid. Bootsma fondly recalls summer vacations to Georgian Bay, Ontario, “I probably spent as much time in the water as I did out of it.” He continues, "I remember telling myself, ‘I’m going to get a job where I can stay here all the time.’” While Harvey didn’t end up working on Georgian Bay, he was offered a job working on Lake Malawi. He continued working there while completing his Ph.D.
Read MoreMicrobes and Human Health: Aquatic Microbial Communities May Hold Clues about How Deadly Pathogens Spread
Aquatic ecosystems are incredibly complex, with many different biotic and abiotic factors constantly interacting. Microbial communities are a key part of aquatic ecosystems, involved in the constant flow of energy and recycling of organic matter, according to Science Direct . The true scope of microbial community impacts on aquatic ecosystems is still not entirely understood. Eric Benbow, a professor of community ecology at Michigan State University, is exploring how microbial communities and pathogens may be negatively impacting human health, and how a changing climate could worsen this problem. 
 How Do Pathogens Arise? 
 Benbow, along with his students and colleagues, are studying a realm of community ecology that is still relatively unknown.
Read MoreWinter 2023 Environmental Monitor Available Now
In this issue, we showcase researchers from across the globe and the importance of monitoring and protecting biodiversity in a variety of ecosystems. From endangered freshwater mussels across the U.S. to vegetation in the Amazon Rainforest , this latest edition highlights the importance of species of all sizes. Through monitoring various parameters, researchers spent the year gathering data and constructing management plans to protect these valuable species. 
 
Our writers also sought out science professionals that are dedicated to protecting nature’s most vulnerable through traditional and more contemporary methods.
Read More