OTT SVR 100 Surface Velocity Radar Sensor

OTT SVR 100 is a simple, non-contact, compact surface water velocity radar sensor designed for measuring flow in open channels and rivers where reliable velocity data is required continuously.

Features

  • Continuous non-contact surface velocity measurements during low, normal or high flows
  • Sensor unaffected by floating debris or suspended sediment by installing above the water surface
  • Easily integrate with new or existing systems using SDI-12 (over RS-485) or Modbus protocols
List Price $$$$$
Your Price Check Price
Usually ships in 1-2 weeks
OTT
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
OTT SVR 100 Surface Velocity Radar Sensor63.151.001.9.0 SVR 100 surface velocity radar sensor, 10m cable
Check Price
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
OTT SVR 100 PC Communication Cable 97.120.371.4.2 SVR 100 PC communication cable (RS-232), 1.5m
Check Price
Usually ships in 1-2 weeks

OTT SVR 100 is a simple, non-contact, compact surface water velocity radar sensor. Designed for measuring flow in open channels and rivers where reliable velocity data is required continuously, during floods or periods of high concentrations of suspended sediments. The sensor is mounted above the water surface, away from floating debris using a flexible bracket for vertical or horizontal installation. Velocity measurements and sensor status information from the integrated vibration and tilt sensor is available via SDI-12 over RS-485 and Modbus. It is also compatible with OTT Prodis 2 software for system calibration.

  • (1) SVR 100 surface velocity sensor
  • (1) Swivel mount
  • (1) 10m cable
  • (1) Quick start guide
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Utah’s Canyonlands Research Center: A Great Study Location for Climate Effects on Ecosystem Processes, Community Dynamics and More

Canyonlands Research Center (CRC) is situated at The Nature Conservancy’s Dugout Ranch , over 5,200 private acres of research study area. One of CRC’s primary roles is to facilitate research and monitoring work of university and federal researchers. CRC is located adjacent to Canyonlands National Park , which extends over more than 337,000 acres of public land. CRC also partners with many organizations, including the Bureau of Land Management, USFS, NPS, USGS, Utah State University, and the Utah Division of Wildlife Resources to identify the most pressing research needs in this region.

Read More

Climate Change Asymmetry Transforming Food Webs

Recent research from a University of Guelph (U of G) team reveals that warmer temperatures caused by climate change are forcing species to alter their behavior, causing food webs in Ontario lakes to transform. As temperatures warm, larger species hunt new prey in deeper waters, changing the ways nutrients and energy flow in lakes and triggering a “rewiring” of food webs. Dr. Timothy Bartley , study lead author and a post-doctoral researcher in the U of G's Department of Integrative Biology , spoke to EM about the work . “I got started on this when I first began graduate school and joined an ongoing project, which was a collaboration with the Ontario Ministry of Natural Resources and Forestry ,” explains Dr. Bartley.

Read More

New Technologies Reducing Uncertainty in Estimation of River Flow

Some of the most interesting data in the world of river and stream monitoring come at times when it's practically impossible to capture—during extreme weather events, for example. Timing alone makes capturing unusual events a challenge, and these kinds of issues have prompted researchers to use classic monitoring data along with new technologies to develop and improve hydraulic modeling for estimating river flows. Steven Lyon , a Conservation Scientist with The Nature Conservancy, Professor at Stockholm University and Associate Professor at The Ohio State University, spoke with EM about the research .

Read More