YOUNG ResponseONE Weather Transmitter

The YOUNG ResponseONE Weather Transmitter measures wind speed and direction, atmospheric pressure, humidity, and temperature in one compact instrument.

Features

  • Measures four key meteorological variables with integrated compass
  • Serial output formats include SDI-12, NMEA, and ASCII text
  • Wiring connections are made in a convenient weather-proof junction box
Your Price $1,996.00
Usually ships in 1-2 weeks
YOUNG
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
YOUNG ResponseONE Weather Transmitter92000 ResponseONE weather transmitter
$1,996.00
Usually ships in 1-2 weeks
YOUNG ResponseONE Weather Transmitter
92000
ResponseONE weather transmitter
Usually ships in 1-2 weeks
$1,996.00
ImagePart#Product DescriptionPriceStockOrder
RM Young Cables 18660 Sensor cable, 8 conductor shielded, 22 AWG, per ft.
$1.90
Drop ships from manufacturer
YOUNG Portable Tripod 18940 Portable tripod
$496.00
Drop ships from manufacturer
RM Young Cables
18660
Sensor cable, 8 conductor shielded, 22 AWG, per ft.
Drop ships from manufacturer
$1.90
Portable tripod
Drop ships from manufacturer
$496.00

The YOUNG ResponseONE Weather Transmitter measures four key meteorological variables with one compact instrument. It is ideal for many weather monitoring applications requiring accurate, and reliable measurements. Ultrasonic wind speed and direction, atmospheric pressure, humidity and temperature sensors are carefully integrated into an enclosure optimized for durability, airflow and mitigation of solar radiation effects. An integrated compass helps enable mobile applications. A variety of useful serial output formats are provided including SDI-12, NMEA, and ASCII text. Output may be continuously provided or, to conserve power, polled output may be used. RS-232 or RS-485 serial format options enable direct integration with YOUNG displays, marine NMEA systems, data loggers or other compatible serial devices. An easy-to-use Windows setup program is provided with each sensor. The program allows the user to customize the device settings such as sampling rates and communication parameters.

The ResponseONE features durable, corrosion-resistant construction and installs on readily available 1 inch (IPS) pipe. Wiring connections are made in a convenient weather-proof junction box. Special connectors and cables are not required.

Wind Speed:
Range:
0–70 m/s (156mph)
Resolution: 0.01 m/s
Accuracy:
±2% or 0.3 m/s (0–30m/s)
±3% (30 – 70 m/s)

Wind Direction:
Azimuth Range:
0-360 degrees
Resolution: 0.1 degree
Accuracy: ±2 degrees

Temperature:
Range:
-40 to +60°C
Resolution: 0.1°C
Accuracy: ±0.5°C

Relative Humidity:
Range: 0–100%
Resolution: 1%
Accuracy: ±2%

Atmospheric Pressure:
Range: 500–1100 hPa
Resolution: 0.1 hPa
Accuracy: ±0.5 hPa

Electronic Compass:
Range:
0–360 degrees
Resolution: 1 degree
Accuracy: ±1.4 degrees

Serial Output (selectable):
Interface: RS-232, RS-485/422, SDI-12
Formats: NMEA, SDI-12, ASCII (polled or continuous)
Baud Rates: 1200, 4800, 9600, 19200 and 38400

Power
Voltage
: 10–30 VDC
Current: 7 mA @ 12 VDC typical, 80 mA max

General
Protection Class
: IP65
EMC Compliance: FCC Class A digital device, IEC Standard 61326-1
Dimensions: 30 cm high x 13.5 cm wide
Weight: 0.7 kg (1.5lb)
Shipping Weight: 1.6 kg (3.5lb)
Operating Temperature: -40 to +60°C
Removable Bird Spikes: Included

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Chloride Contamination Threatens Thousands of Northeast & Midwest Lakes

Thousands of lakes in the northeastern United States are at risk of chloride contamination. In a 17-state area from Minnesota to Missouri to Maine, elevated chloride levels in some of the region’s nearly 50,000 lakes are driven largely by landscape features that are cleared of snow and ice by road salt in the winter. “The biggest driver of increasing chloride concentrations in these lakes was road density and development. The more developed a watershed, the more likely you are to have roads and parking lots,” said Hilary Dugan, an assistant professor in the Center for Limnology at University of Wisconsin—Madison. Dugan is the lead author on a study examining the issue recently published in Environmental Science and Technology .

Read More

Is eradicating Great Lakes sea lamprey an “impossible dream?” Researchers say no

The sea lamprey’s days in the Great Lakes could be numbered. That’s according to one researcher who took one of the first scientific looks at the possibility of sea lamprey eradication in the Great Lakes. So, can you remove enough sea lamprey to make them disappear? “Well the answer is we already have,” said Michael Jones, emeritus professor of fisheries and wildlife at Michigan State University. “Then there’s the obvious question: Why are they still here?”  While multiple gaps in current management techniques, like sea lamprey poisons called lampricides, could account for sea lamprey’s persistence in the Great Lakes, new technology could help sea lamprey managers eliminate inaccessible populations.

Read More

America’s Elusive Crayfish and the eDNA that’s Finding Them

The Shasta crayfish and signal crayfish are two similar looking arthropods on two very different ecological trajectories. As one spreads in abundance, originating in the Pacific Northwest and spreading throughout the world, the other has been reduced to a handful of remaining populations spread throughout one river and its tributaries.  Pacifastacus leniusculus - the signal crayfish - has met few obstacles in its widely successful expansion from the Pacific Northwest southward in California and Nevada, as well as Europe and Japan. By some expert accounts, it has reached invader status. And while invasive species are rarely good for the surrounding food webs, it’s Pacifastacus fortis - the Shasta crayfish - that’s suffered the most at the signal crayfish’s fortune.

Read More