599870

YSI EXO Conductivity & Temperature Sensor

YSI EXO Conductivity & Temperature Sensor

Description

The EXO conductivity & temperature sensor is a digital smart sensor featuring welded titanium construction and wet-mateable connectors.

Features

  • 0 to 200 mS/cm measurement range
  • T63<2 sec response time
  • ±0.5% of reading or 0.001 mS/cm accuracy from 0 to 100
More Views
List Price
$$$$$
Your Price
Get Quote

In Stock
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The EXO combination conductivity and temperature sensor should be installed in a sonde in nearly all sonde applications. Not only will this sensor provide the most accurate and fastest response temperature data, but it will also provide the best data for the use in temperature compensation for the other EXO probes. The conductivity data is used to calculate salinity, non-linear function (nLF) conductivity, specific conductance, and total dissolved solids, and compensate for changes in density of water (as a function of temperature and salinity) in depth calculations if a depth sensor is installed.

Temperature Thermistor
The temperature sensor uses a highly stable and aged thermistor with extremely low-drift characteristics. The thermistor’s resistance changes with temperature. The measured resistance is then converted to temperature using an algorithm. The temperature sensor receives a multi-point NIST traceable wet calibration and the accuracy specification of 0.01˚C is valid for expected life of the probe. No calibration or maintenance of the temperature sensor is required, but accuracy checks can be conducted.

Conductivity Electrodes
The conductivity sensor uses four internal, pure-nickel electrodes to measure solution conductance. Two of the electrodes are current driven, and two are used to measure the voltage drop. The measured voltage drop is then converted into a conductance value in milliSiemens (millimhos). To convert this value to a conductivity value in milliSiemens per cm (mS/cm), the conductance is multiplied by the cell constant that has units of reciprocal cm (cm-1). The cell constant for the conductivity cell is approximately 5.5/cm ±10%. For most applications, the cell constant is automatically determined (or confirmed) with each deployment of the system when the calibration procedure is followed.

Temperature Compensation
EXO sensors have internal thermistors for quality assurance purposes. Turbidity uses the internal thermistor for temperature compensation, while all other EXO sensors reference the C/T probe for temperature compensation. To display and log temperature, a C/T probe must be installed in an EXO sonde. Thermistor readings are logged in the sonde’s raw data–viewable in KOR software–but are not included in data exported to Excel.

Image Part # Product Description Price Stock Order
YSI EXO Conductivity & Temperature Sensor 599870 EXO conductivity & temperature sensor In Stock
Image Part # Product Description Price Stock Order
YSI Conductivity Standards 065270 3161 conductivity standard, 1,000 uS, 1 quart
$68.40
In Stock
YSI Conductivity Standards 065272 3163 conductivity standard, 10,000 uS, 1 quart
$68.40
Usually ships in 3-5 days
YSI Conductivity Standards 065274 3165 conductivity standard, 100,000 uS, 1 quart
$68.40
Usually ships in 3-5 days
YSI Conductivity Standards 060907 3167 conductivity standard, 1,000 uS, 8 pints
$117.80
In Stock
YSI Conductivity Standards 060911 3168 conductivity standard, 10,000 uS, 8 pints
$117.80
In Stock
YSI Conductivity Standards 060660 3169 conductivity standard, 50,000 uS, 8 pints
$117.80
In Stock
YSI EXO Anti-Fouling Copper Sensor Screens 599867 EXO anti-fouling copper screen kit, pack of 2
$75.00
Usually ships in 3-5 days
YSI EXO Conductivity/Temperature Sensor Cleaning Brushes 599470 EXO conductivity/temperature sensor cleaning brush, pack of 2
$10.00
Usually ships in 3-5 days

Related Products

In The News

Ice Fishing With A SondeCAM Underwater Fishing Camera

Thinking of hitting the ice with a SondeCAM underwater fishing camera? Due to its rugged design, you won't have to worry about it handling the harsh elements. However there are a few simple tricks to get the most out of a FishSens SondeCAM while ice fishing. You won't have to do anything to modify the SondeCAM itself, but you are going to have to bring a few extra things. Most importantly we are going to need a power source. Unless you are hauling your gear with a truck, you'll want something more portable than the battery you used in the boat. Pick up an inexpensive and maintenance-free 12-volt, 9-amp battery. It is going to provide plenty of power, but will be much lighter and take up less space.

Read More

Size Them Up With A SondeCAM Underwater Fishing Camera

We've all felt the frustration of weeding through a school of dinks to catch a "keeper." Often the small fish outnumber the bigger ones and they are typically more aggressive. Sometimes there's no choice but to deal with it, as is often the case with open water fishing. However a frozen lake involves a vertical presentation and a stable platform, it's a perfect situation to pick and choose which fish you want. Once you locate a school and get set up it's time to start sizing them up with a FishSens SondeCAM underwater fishing camera. It can be mind-blowing just how big some of these schools of fish are and also how outnumbered fish of a desirable size can be.

Read More

In Ontario Lakes, Non-Native Bass Impact Native Fish

It’s no secret that anglers have been the means by which invasive species and non-native fish have spread to new water bodies in the past. Fishermen have even been known to transport some of their favorite fish to new areas on purpose so that they can catch them a little closer to home. And the results of those actions have not always been ideal. In Ontario, Canada, fishermen have taken non-native bass and stocked them into what were historically lakes dominated by brook and cutthroat trout. The actions have impacted ecosystems, but scientists have been unable to broadly study the effects because they didn’t have enough data. But that is no longer the case for some Ontario lakes, as a study from biologists at the University of Toronto shows.

Read More