YSI EXO3 Multi-Parameter Water Quality Sonde
Features
- Titanium sensors with wet-mateable, universal sensor ports
- Biofouling protection with central wiper brush and copper-alloy accessories
- Integral SDI-12 communications make it ideal for data collection platforms
- Expedited repair and warranty service
- Lifetime technical support
- More
Modern and Efficient Design
The YSI EXO3 represents an advanced sonde platform that offers a wide range of capabilities to those dedicated to monitoring natural aquatic environments such as oceans, estuaries, rivers, lakes, and groundwater. With a highly efficient power management platform, robust construction, and chemistry-free anti-fouling system, the EXO3 allows accurate data collection for up to 90 days between service intervals.
Multi-Port Water Quality Sonde
The YSI EXO3 sonde includes four sensor ports and a central anti-fouling wiper option. Sensor (sold separately) parameters include:
- Temperature
- Conductivity
- Depth
- Dissolved oxygen
- pH
- ORP
- Total algae (phycocyanin or phycoerythrin along with chlorophyll)
- Turbidity
- Fluorescent dissolved organic matter (fDOM)
- Rhodamine WT
- UV nitrate
- ISE ammonium
- ISE nitrate
- ISE chloride
Outputs Four Calculated Parameters.
- Salinity
- Specific conductance
- Total dissolved solids (TDS)
- Total suspended solids (TSS)
Onboard Signal Processing and Memory
All EXO sensors are digital sensors with onboard signal processing and memory. Built-in sensor diagnostic and calibration data allow users to calibrate multiple sensors in one sonde and distribute them to various other sondes in the field. Wet-mateable connectors allow for swaps in wet conditions, while active port monitoring automatically detects each sensor and verifies operation.
EXO3 Specifications
Diameter: 7.62cm (3.00 in)
Length: 58.67cm (23.10 in)
Peripheral Ports: 1 power communication port
Sensor Ports: 5 (4 ports available when central wiper used)
3-Year Warranty: Sonde; handheld
2-Year Warranty: Cables; conductivity/temperature and optical sensors; electronics base for pH, pH/ORP, ammonium, chloride, and nitrate sensors
1-Year Warranty: Optical DO cap and replaceable reagent modules for pH and pH/ORP sensors
3-Month Warranty: Replaceable reagent modules for ammonium, chloride, and nitrate sensors
Weight: 2.00kg (4.41 lbs)
General Sonde Specifications
Battery Life: 60 days**
Computer Interface: YSIP via USB Signal Output Adapter (SOA) and Bluetooth
Output Options: SDI-12 native output; RS-232 & SDI-12 via DCP-SOA; Modbus & RS-485 via Modbus-SOA
Data Memory: 512 MB total memory; >1,000,000 Logged readings
Depth Rating: 0 to 250m (0 to 820 ft)
Sample Rate: Up to 4 Hz
Operating Temperature: -5 to +50°C (23 to 122°F)
Storage Temperature: -20 to +80°C (-4 to 176°F)
**Typically 60 days at 20˚C at 15-minute logging interval; temperature/conductivity, pH/ORP, DO, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO3. Battery life is heavily dependent on sensor configuration.
- (1) EXO3 sonde
- (1) Probe guard
- (1) Calibration cup
- (1) Tool kit
- (3) Port plugs
- (2) D-cell alkaline batteries
- (1) USB drive loaded with manual & KOR Software
- YSI EXO Multi-Parameter Water Quality Sonde Brochure
- YSI EXO Multi-Parameter Water Quality Sonde Manual
- YSI EXO Multi-Parameter Water Quality Sonde Quick Start Guide
- YSI EXO Multi-Parameter Water Quality Sonde SmartQC Handbook
- Guide to Monitoring Turbidity at Dredging Sites
- Guide to Monitoring Water Quality on Inland Lakes
In The News
Monitoring Mariculture in the Gulf of Alaska
The mariculture industry in the Gulf of Alaska has been steadily growing in recent years, guided by ongoing research to help refine farm location and cultivation practices. A subset of aquaculture, mariculture focuses on rearing organisms in the open ocean. 
 
In Alaska, finfish farming is illegal, so most farms cultivate kelp, oysters, or a combination of the two. These small, locally operated farms started popping up in the Gulf of Alaska in the early 1990s, when shellfish farming first became legal. Kelp farming did not begin to catch on in the state until 2016. 
 
Many of the coastal areas that have grown interested in mariculture are historically commercial fishing communities.
Read MoreData-Driven Advocacy on the Lower Deschutes River
Like many freshwater environments, the Deschutes River in Oregon is under pressure from development, pollution, and climate change. Many rivers, streams and lakes in the Deschutes Basin do not meet Oregon water quality standards –where state water quality monitoring assesses levels of bacteria, pH, dissolved oxygen, temperature, and fine sediment. 
 
Hannah Camel is the Water Quality Coordinator for the Deschutes River Alliance (DRA), a non-profit organization that focuses on the health of the lower 100 miles of the Deschutes River–the area most affected by human intervention. 
 
As a data-driven organization, the DRA has benefited from the installation of two NexSens X2 data loggers.
Read MoreGreat Lakes Research Center: Designing Targeted Monitoring Solutions
According to the National Oceanic and Atmospheric Administration ( NOAA ), the Great Lakes have more miles of coastline than the contiguous Atlantic and Pacific coasts combined and contain 20 percent of the world's freshwater, making it a critical region to protect and conserve. 
 
Continuous monitoring and data-informed resource management are key components of managing waters in the region. 
 
Hayden Henderson, a research engineer with the Great Lakes Research Center (GLRC), designs and deploys monitoring platforms throughout the Great Lakes. With a background in environmental engineering, Henderson enjoyed the challenge of creating systems and making them work to obtain difficult, remote measurements.
Read More