Onset ECH2O EC-5 Soil Moisture Smart Sensor

This affordably-priced ECH2O EC-5 soil moisture smart sensor offers a smaller measurement volume for use in containers or measuring at multiple depths.

Features

  • Measures a 0.3-liter volume of soil
  • High-frequency (70 MHz) circuit provides good accuracy even in high-salinity and sandy soils
  • Compatible with Onset stand-alone and web-based weather stations
$199.00
Stock Check Availability  

This affordably-priced soil moisture smart sensor offers a two-tine design for easy installation. This sensor integrates the field-proven ECH2O EC-5 Sensor and a 12-bit A/D. It provides ±3% accuracy in typical soil conditions, and ±2% accuracy with soil-specific calibration. Readings are provided directly in volumetric water content. This sensor is designed to maintain low sensitivity to salinity and textural effects.

Measurement Range
In soil: 0 to 0.550(m³/m³)
Extended range: -0.401 to 2.574 m³/m³ (full scale)

The sensor is capable of providing readings outside the standard volumetric water content range. This is helpful in diagnosing sensor operation and installation. See User Manual for additional information.

Accuracy: ±0.031 m³/m³ (±3.1%) typical 0 to 50°C (32° to 122°F); ±0.020 m³/m³ (±2%) with soil specific calibration.

This is a system-level accuracy specification and is comprised of the ECH2O probe's accuracy of ±0.03 m³/m³ typical (±0.02 m³/m³ soil specific) plus the smart sensor adapter accuracy of ±0.001 m³/m³ at 25°C (77°F). There are additional temperature accuracy deviations of ±0.003 m³/m³ / °C maximum for the ECH2O probe across operating temperature environment, typical <0.001 m³/m³ / °C. (The temperature dependence of the smart sensor adapter is negligible.)

Resolution: 0.0007 m³/m³ (0.07%)
Soil probe dimensions: 89 x 15 x 1.5 mm (3.5 x 0.62 x 0.06 in.)
Weight: 180 grams (6.3 oz)
Decagon ECH2O probe part No.: EC-5
Sensor operating temperature: 0° to 50°C (32° to 122°F).

While the sensor probe and cable can safely operate at below-freezing temperatures (to -40°C/F) and up to 75°C (167°F), the soil moisture data collected at these extreme temperatures is outside of the sensor's accurate measurement range.

Volume of influence: 0.3 liter (10.1 oz)
Sensor frequency: 70 MHz
Bits per sample: 12
Number of data channels: 1

Note: A single smart sensor-compatible HOBO logger can accommodate 15 data channels and up to 100 m (328 ft) of smart sensor cable (the digital communications portion of the sensor cables)

Measurement averaging option: No
Cable length available: 5 m (16 ft)
Length of Smart Sensor network cable: 0.5 m (1.6 ft)

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Onset ECH2O EC-5 Soil Moisture Smart Sensor
S-SMC-M005
ECH2O EC-5 soil moisture smart sensor for small areas, 5m cable
$199.00
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Collecting Data at the Top of the World: How Scientists Retrieve Glacial Ice Cores

A helicopter touches down in the small town of Sicuani, Peru, at an elevation of 11,644 feet. Earlier that day, a boxcar brought fuel, drills, food, and other equipment for a glacial expedition. The year is 1979, and glaciologist Lonnie Thompson is preparing to lead a team to the Quelccaya ice cap in hopes of becoming the first scientists to drill an ice core sample from this glacier. The only problem? The glacier is located at 19,000 feet in one of the most remote areas of the world. The helicopter takes off from the town, but the thin atmosphere at that elevation does not allow it to safely touch down on the ice– due to the aircraft’s weight, and it becomes unstable when the air is less dense.

Read More

Spring 2024 Environmental Monitor Available Now

In the Spring 2024 edition of the Environmental Monitor, we showcase researchers from across the world and the importance of monitoring natural disasters and the various symptoms of climate emergencies. Tracking the impacts of wildfires in Canada to air pollution in New York , this latest edition showcases how the influence of climate change and natural disasters transfers across state and country lines. Researchers spent the year gathering data, predicting disasters, and monitoring as a means of managing and understanding natural disasters. Our writers sought out environmental professionals dedicated to protecting human health , minimizing the impacts of natural disasters and creating monitoring systems.

Read More

Combining Academia and Lake Associations: Monitoring Lake Lillinonah

Lake Lillinonah may be Connecticut's second-largest lake, but it holds a great deal of meaning for locals and researchers in the surrounding towns. The lake is so significant to the surrounding community that it is one of many lakes in the United States with a dedicated lake association advocating for the resource. Jen Klug, Professor of Biology in the College of Arts and Sciences at Fairfield University , started her career at Fairfield as a natural progression in her background as a classical aquatic ecologist and found herself working closely with Lake Lillinonah's Friends of the Lake (FOTL) when they reached out to collaborate on an algae presentation for a public forum back in 2006.

Read More