YSI EXO Conductivity & Temperature Sensor

The EXO conductivity & temperature sensor is a digital smart sensor featuring welded titanium construction and wet-mateable connectors.

Features

  • 0 to 200 mS/cm measurement range
  • T63<2 sec response time
  • ±0.5% of reading or 0.001 mS/cm accuracy from 0 to 100
Your Price Call
In Stock
YSI
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
YSI EXO Conductivity & Temperature Sensor599870 EXO conductivity & temperature sensor
Request Quote
In Stock
ImagePart#Product DescriptionPriceStockOrder
YSI Conductivity Standards 065270 3161 conductivity standard, 1,000 uS, 1 quart
$71.25
In Stock
YSI Conductivity Standards 065272 3163 conductivity standard, 10,000 uS, 1 quart
$71.25
In Stock
YSI Conductivity Standards 065274 3165 conductivity standard, 100,000 uS, 1 quart
$71.25
Usually ships in 3-5 days
YSI Conductivity Standards 060907 3167 conductivity standard, 1,000 uS, 8 pints
$121.60
In Stock
YSI Conductivity Standards 060911 3168 conductivity standard, 10,000 uS, 8 pints
$121.60
In Stock
YSI Conductivity Standards 060660 3169 conductivity standard, 50,000 uS, 8 pints
$121.60
In Stock
YSI EXO Anti-Fouling Copper Sensor Screens 599867 EXO anti-fouling copper screen kit, pack of 2
$78.00
In Stock
YSI EXO Conductivity/Temperature Sensor Cleaning Brushes 599470 EXO conductivity/temperature sensor cleaning brush, pack of 2
$12.00
Usually ships in 3-5 days

The EXO combination conductivity and temperature sensor should be installed in a sonde in nearly all sonde applications. Not only will this sensor provide the most accurate and fastest response temperature data, but it will also provide the best data for the use in temperature compensation for the other EXO probes. The conductivity data is used to calculate salinity, non-linear function (nLF) conductivity, specific conductance, and total dissolved solids, and compensate for changes in density of water (as a function of temperature and salinity) in depth calculations if a depth sensor is installed.

Temperature Thermistor
The temperature sensor uses a highly stable and aged thermistor with extremely low-drift characteristics. The thermistor’s resistance changes with temperature. The measured resistance is then converted to temperature using an algorithm. The temperature sensor receives a multi-point NIST traceable wet calibration and the accuracy specification of 0.01˚C is valid for expected life of the probe. No calibration or maintenance of the temperature sensor is required, but accuracy checks can be conducted.

Conductivity Electrodes
The conductivity sensor uses four internal, pure-nickel electrodes to measure solution conductance. Two of the electrodes are current driven, and two are used to measure the voltage drop. The measured voltage drop is then converted into a conductance value in milliSiemens (millimhos). To convert this value to a conductivity value in milliSiemens per cm (mS/cm), the conductance is multiplied by the cell constant that has units of reciprocal cm (cm-1). The cell constant for the conductivity cell is approximately 5.5/cm ±10%. For most applications, the cell constant is automatically determined (or confirmed) with each deployment of the system when the calibration procedure is followed.

Temperature Compensation
EXO sensors have internal thermistors for quality assurance purposes. Turbidity uses the internal thermistor for temperature compensation, while all other EXO sensors reference the C/T probe for temperature compensation. To display and log temperature, a C/T probe must be installed in an EXO sonde. Thermistor readings are logged in the sonde’s raw data–viewable in KOR software–but are not included in data exported to Excel.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

New Monitoring Site for Ocean Acidification in American Samoa

The National Oceanic and Atmospheric Administration (NOAA) and the Pacific Islands Ocean Observing System (PacIOOS) at the University of  Hawaiʻi at Māno a , in collaboration with other partners, recently deployed a new ocean acidification (OA) monitoring site in Fagatele Bay National Marine Sanctuary , American Samoa. Derek Manzello , a coral ecologist with NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) in Florida, is the lead PI of ACCRETE: the Acidification, Climate and Coral Reef Ecosystems Team at AOML. Dr. Manzello connected with EM about the deployment. “ACCRETE encompasses multiple projects that all aim to better understand the response of coral reef ecosystems to climate change and/or ocean acidification,” explains Dr.

Read More

Extreme Wave Heights, Ocean Winds Increasing Globally

Around the world, extreme wave heights and ocean winds are increasing. The greatest increase is happening in the Southern Ocean, according to recent research from the University of Melbourne , and Dr. Ian Young corresponded with EM about what inspired the work. “Our main interest is ocean waves, and we are interested in wind because it generates waves,” explains Dr. Young. “Ocean waves are important for the design of coastal and offshore structures, the erosion of beaches and coastal flooding, and the safety of shipping.” Waves also have a role in determining how much heat, energy and gas can be trapped in the ocean. “The major reason why changes in wave height may be important is because of sea level rise,” details Dr. Young.

Read More

Measuring Rising Floodwaters with the USGS

All year long the US Geological Survey (USGS) in North Dakota and South Dakota monitors water levels, but during times of flooding, all eyes are on the team. EM spoke to USGS data chief Chris Laveau about the monitoring efforts. “The US Geological Survey in North Dakota and South Dakota is one entity, so we monitor the flooding in both states,” explains Mr. Laveau. “The role is to provide continuous information on water level, we call that gauge height or stage, and we also provide continuous information at a lot of locations on stream flow, typically called discharge. We do that year round but, obviously, during a flood event it garners more attention.

Read More