PME miniPAR Logger

The miniPAR logger is a portable, submersible instrument for measuring diffused sunlight through water, or PAR (Photosynthetically Active Radiation).

Features

  • Submersible up to 100 meters
  • PAR, orientation, and temperature sensors
  • Anti-fouling wiper available
Your Price Call
Stock Check Availability  

Overview
The PME minPAR contains a tilt sensor to ensure proper orientation and a temperature sensor. Data is recorded on an internal SD card. The miniPAR is powered by 2 AA batteries and can be fitted with an anti-fouling miniWIPER to protect long-term data accuracy.

Measuring Photosynthetically Active Radiation
The miniPAR is fitted with an LI-192 Underwater Quantum Sensor manufactured by LI-COR. The sensor uses a silicon photodiode and glass optical filters to create a uniform sensitivity to light wavelengths in the 400-700nm range. It measures PAR from all angles in one hemisphere. PAR is a key indicator for understanding nutrient loading, photosynthesis, algae blooms, or other biological, chemical, or physical processes.

Battery Powered
PME is confident that the logger can continue collecting measurements for over one year before the batteries need to be replaced at a sampling interval of one minute. The miniPAR is constructed from strong Delrin plastic that does not easily crack or break.

Embedded Tilt Sensor
The miniPAR is unique among similar loggers in that it contains a tilt sensor to measure the orientation of the device. Since PAR measurement accuracy is dependent upon the sensor being pointed toward the water surface, the tilt sensor will alert the user if the sensor is rotated in a particular direction.

PME Software Included
PME software is provided with every miniPAR logger and can be found on the included SD card when it is connected to a computer. The software creates visual plots to read PAR measurements easily and allows the user to set the internal clock and sample rate.

Questions & Answers
Is the PME miniPAR logger compatible with the LI-COR LI-193 underwater spherical PAR sensor for unattended deployment?
No, the LI-193 is not compatible with the miniPAR logger. Typically, these sensors need to be wiped during extended deployments, making the spherical sensors impractical for those types of applications.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
PME miniPAR Logger
7530
miniPAR photosynthetically active radiation, tilt & temperature logger
Request Quote
Check Availability  
PME miniPAR Logger
3130
miniPAR photosynthetically active radiation, tilt & temperature logger with miniWIPER anti-fouling sensor wiper & miniPAR bracket attachment
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Collecting Data at the Top of the World: How Scientists Retrieve Glacial Ice Cores

A helicopter touches down in the small town of Sicuani, Peru, at an elevation of 11,644 feet. Earlier that day, a boxcar brought fuel, drills, food, and other equipment for a glacial expedition. The year is 1979, and glaciologist Lonnie Thompson is preparing to lead a team to the Quelccaya ice cap in hopes of becoming the first scientists to drill an ice core sample from this glacier. The only problem? The glacier is located at 19,000 feet in one of the most remote areas of the world. The helicopter takes off from the town, but the thin atmosphere at that elevation does not allow it to safely touch down on the ice– due to the aircraft’s weight, and it becomes unstable when the air is less dense.

Read More

Spring 2024 Environmental Monitor Available Now

In the Spring 2024 edition of the Environmental Monitor, we showcase researchers from across the world and the importance of monitoring natural disasters and the various symptoms of climate emergencies. Tracking the impacts of wildfires in Canada to air pollution in New York , this latest edition showcases how the influence of climate change and natural disasters transfers across state and country lines. Researchers spent the year gathering data, predicting disasters, and monitoring as a means of managing and understanding natural disasters. Our writers sought out environmental professionals dedicated to protecting human health , minimizing the impacts of natural disasters and creating monitoring systems.

Read More

Combining Academia and Lake Associations: Monitoring Lake Lillinonah

Lake Lillinonah may be Connecticut's second-largest lake, but it holds a great deal of meaning for locals and researchers in the surrounding towns. The lake is so significant to the surrounding community that it is one of many lakes in the United States with a dedicated lake association advocating for the resource. Jen Klug, Professor of Biology in the College of Arts and Sciences at Fairfield University , started her career at Fairfield as a natural progression in her background as a classical aquatic ecologist and found herself working closely with Lake Lillinonah's Friends of the Lake (FOTL) when they reached out to collaborate on an algae presentation for a public forum back in 2006.

Read More