LI-191R-BNC-2

LI-COR LI-191R Line PAR Sensors

LI-COR LI-191R Line PAR Sensors

Description

The LI-COR LI-191R Line PAR Sensor measures photosynthetically active radiation (PAR) over its one meter length for use within a plant canopy.

Features

  • Spatially averages PPFD over its 1m length
  • Uses a 1m quartz rod under a diffuser to conduct light to a single Quantum sensor
  • Improved water resistance for long-term outdoor deployment
Free Shipping on this product
List Price
$$$$$
Your Price
Check Price

Usually ships in 3-5 days
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The LI-191R Line Quantum Sensor measures Photosynthetically Active Radiation (PAR) integrated over its 1-meter length. It is used to measure sunlight under a plant canopy, where the light field is non-uniform. It measures light in units of Photosynthetic Photon Flux Density (PPFD), which is expressed as μmol s-1 m-2.

A non-uniform light field under a plant canopy is difficult to characterize with a single sensor or multiple sensors arranged in a line because the light field can vary considerably from point to point and over a line.

To solve this problem, the entire LI‑191R diffuser is sensitive to light over its 1-meter length. Since the diffuser is one continuous piece, the LI‑191R essentially integrates an infinite number of points over its surface into a single value that represents light from the entire 1-meter length.

Sensors that use multiple photodiodes potentially induce large uncertainty in measurements because each photodiode can drift independently of the others. The diffuser and single photodiode in the LI‑191R provide stable, integrated measurements that are superior to averages provided by many linear sensors.

Optical filters block radiation with wavelengths beyond 700 nm, which is critical for under-canopy measurements, where the ratio of infrared to visible light may be high.

Notable Specifications:
  • Absolute Calibration: ± 10% traceable to National Institute of Science and Technology (NIST). The LI-191 is calibrated via transfer calibration
  • Sensitivity: Typically 7 μA per 1,000 μmol s-1 m-2
  • Linearity: Maximum deviation of 1% up to 10,000 μmol s-1 m-2
  • Response Time: 10 μs
  • Temperature Dependence: ± 0.15% per °C maximum
  • Cosine Correction: Acrylic diffuser
  • Azimuth: < ± 2% error over 360° at 45° elevation
  • Sensitivity Variation over Length: ± 7% maximum using a 2.54 cm (1”) wide beam from an incandescent light source.
  • Sensing Area: 1 m × 12.7 mm (39.4” × 0.50”)
  • Detector: High stability silicon photovoltaic detector (blue enhanced)
  • Sensor Housing: Weatherproof anodized aluminum housing with acrylic diffuser and stainless steel hardware.
  • Size: 121.3 L × 2.54 W × 2.54 cm D (47.7” × 1.0” × 1.0”)
  • Weight: 1.4 kg (3.0 lbs.)
  • Cable Length: 2 m, 5 m (6.5', 16.4')
What's Included:
  • (1) LI-191R Line PAR Sensor
  • (1) Bubble level
  • (1) Detachable 10 ft. cable
  • (1) Hard-sided carrying case
Image Part # Product Description Price Stock Order
LI-COR LI-191R Line PAR Sensors LI-191R-BNC-2 Line Quantum sensor with microamp output, 2m cable with BNC connector Usually ships in 3-5 days
LI-COR LI-191R Line PAR Sensors LI-191R-BNC-5 Line Quantum sensor with microamp output, 5m cable with BNC connector
Usually ships in 3-5 days
LI-COR LI-191R Line PAR Sensors LI-191R-SMV-2 Line Quantum sensor with standardized mV output, 2m cable with bare leads
Usually ships in 3-5 days
LI-COR LI-191R Line PAR Sensors LI-191R-SMV-5 Line Quantum sensor with standardized mV output, 5m cable with bare leads
Usually ships in 3-5 days
Image Part # Product Description Price Stock Order
LI-COR Sensor Extension Cables 2222SB Extension cable, for use with type BNC or SMV terrestrial light sensors, 15m Usually ships in 3-5 days
LI-COR Sensor Extension Cables 2222SB-100 Extension cable, for use with type BNC or SMV terrestrial light sensors, 30m Usually ships in 3-5 days
LI-COR BNC to Bare Lead Adapter 2200 BNC to bare lead adapter, converts BNC type sensors to BL type sensors In Stock
LI-COR Sensor Millivolt Adapters 2290 Sensor millivolt adapter (604 Ohm resistor), for use with LI-190R-BNC, LI-191R-BNC & LI-210R-BNC sensors Usually ships in 3-5 days
LI-COR 2420 Light Sensor Amplifier 2420-BNC Light sensor amplifier, BNC connector Usually ships in 3-5 days
LI-COR LI-250A Light Meter LI-250A Light meter Usually ships in 3-5 days
LI-COR LI-1500 Light Sensor Logger LI-1500 Light sensor logger Usually ships in 3-5 days
LI-COR LI-1500 Light Sensor Logger LI-1500G Light sensor logger with GPS Usually ships in 3-5 days
NexSens iSIC-MAST Data Logging System iSIC-MAST Mast-mounted iSIC data logging system with solar charging kit
$2795.00
Usually ships in 3-5 days
NexSens MAST Wireless Telemetry Systems 3100-MAST Mast-mounted 3100-iSIC data logging system with cellular modem telemetry & solar charging kit Usually ships in 3-5 days
NexSens MAST Wireless Telemetry Systems 4100-MAST Mast-mounted 4100-iSIC data logging system with spread spectrum radio telemetry & solar charging kit Usually ships in 3-5 days
NexSens MAST Wireless Telemetry Systems 6100-MAST Mast-mounted 6100-iSIC data logging system with Iridium satellite telemetry & solar charging kit Usually ships in 3-5 days

Related Products

In The News

Sediment and Tree Rings Reveal Details of 500 Years of Floods—and Human Interference

A 100-year flood sounds to laypeople like something that happens once each century, but the term really just refers to an extreme hydrologic event with a 100-year recurrence interval. In other words, it's a flood whose magnitude reaches a level that has a one percent chance of happening in any given year. This means they can happen more often than that—and a recent study from a team led by Woods Hole Oceanographic Institution (WHOI) researchers has revealed that along the Mississippi River, they are happening more frequently. The work is also providing insight into why human interference in the form of projects to channelize, straighten, and bound the water with artificial levees is causing such a notable increase in both the frequency and size of extreme flood events.

Read More

Inside the Struggle to Designate Lake Erie's Water Impaired

Since the mid-1800s, Ohio has been a locus for industry . As the state cranked out steel, rubber, automotive parts, appliances, glassware, and refined oil, its economy grew—but pollution also became a serious problem . Factories dumped refuse into rivers and into Lake Erie, agricultural runoff ended up there, and city sewers also emptied into the lake. By the late 1960s, the Cuyahoga River had caught on fire, and the shores of Lake Erie were lined with dead fish as algal blooms flourished in its waters. The fiery river and the presumed “death†of Lake Erie prompted changes at both the local and national level. Leaders in Cleveland worked to improve the sewage system and monitor water quality more effectively.

Read More

Deltas in Decline: Mapping the Retreating Seafloor of the Mississippi River Delta

The rapid coastal land loss that the state of Louisiana has been experiencing over the past century has been reported on many times. We know that Louisiana loses about 1 football field's worth of land every hour, and that some of the first “climate change refugees†in the US are coming from Louisiana as towns like Isle de Jean Charles disappear into the water. New research from a Louisiana State University (LSU) team reveals that land loss is also occurring underwater. The disappearing seafloor in the Mississippi River Delta (MRD) is threatening various marine flora and fauna, and contributing to pollution in the Gulf of Mexico. The team mapped the shrinking seafloor in their study, detailing the effects the loss is having on the region.

Read More