LI-COR LI-191R Line PAR Sensors

The LI-COR LI-191R Line PAR Sensor measures photosynthetically active radiation (PAR) over its one meter length for use within a plant canopy.

Features

  • Spatially averages PPFD over its 1m length
  • Uses a 1m quartz rod under a diffuser to conduct light to a single Quantum sensor
  • Improved water resistance for long-term outdoor deployment
List Price $$$$$
Your Price Check Price
Usually ships in 3-5 days
LI-COR
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
LI-COR LI-191R Line PAR SensorsLI-191R-BNC-2 Line Quantum sensor with microamp output, 2m cable with BNC connector
Check Price
Usually ships in 3-5 days
LI-COR LI-191R Line PAR Sensors LI-191R-BNC-5 Line Quantum sensor with microamp output, 5m cable with BNC connector
Check Price
Usually ships in 3-5 days
LI-COR LI-191R Line PAR Sensors LI-191R-SMV-2 Line Quantum sensor with standardized mV output, 2m cable with bare leads
Check Price
Usually ships in 3-5 days
LI-COR LI-191R Line PAR Sensors LI-191R-SMV-5 Line Quantum sensor with standardized mV output, 5m cable with bare leads
Check Price
Usually ships in 3-5 days
ImagePart#Product DescriptionPriceStockOrder
LI-COR Sensor Extension Cables 2222SB Extension cable, for use with type BNC or SMV terrestrial light sensors, 15m
Check Price
Usually ships in 3-5 days
LI-COR 100 ft. Sensor Extension Cable 2222SB-100 Extension cable, for use with type BNC or SMV terrestrial light sensors, 30m
Check Price
Usually ships in 3-5 days
LI-COR BNC to Bare Lead Adapter 2200 BNC to bare lead adapter, converts BNC type sensors to BL type sensors
Check Price
In Stock
LI-COR Sensor Millivolt Adapters 2290 Sensor millivolt adapter (604 Ohm resistor), for use with LI-190R-BNC, LI-191R-BNC & LI-210R-BNC sensors
Check Price
Usually ships in 3-5 days
LI-COR 2420 Light Sensor Amplifier 2420-BNC Light sensor amplifier, BNC connector
Check Price
Usually ships in 3-5 days
LI-COR LI-250A Light Meter LI-250A Light meter
Check Price
In Stock
LI-COR LI-1500 Light Sensor Logger LI-1500 Light sensor logger
Check Price
Usually ships in 3-5 days
LI-COR LI-1500 Light Sensor Logger LI-1500G Light sensor logger with GPS
Check Price
Usually ships in 3-5 days

The LI-191R Line Quantum Sensor measures Photosynthetically Active Radiation (PAR) integrated over its 1-meter length. It is used to measure sunlight under a plant canopy, where the light field is non-uniform. It measures light in units of Photosynthetic Photon Flux Density (PPFD), which is expressed as μmol s-1 m-2.

A non-uniform light field under a plant canopy is difficult to characterize with a single sensor or multiple sensors arranged in a line because the light field can vary considerably from point to point and over a line.

To solve this problem, the entire LI‑191R diffuser is sensitive to light over its 1-meter length. Since the diffuser is one continuous piece, the LI‑191R essentially integrates an infinite number of points over its surface into a single value that represents light from the entire 1-meter length.

Sensors that use multiple photodiodes potentially induce large uncertainty in measurements because each photodiode can drift independently of the others. The diffuser and single photodiode in the LI‑191R provide stable, integrated measurements that are superior to averages provided by many linear sensors.

Optical filters block radiation with wavelengths beyond 700 nm, which is critical for under-canopy measurements, where the ratio of infrared to visible light may be high.

  • Absolute Calibration: ± 10% traceable to National Institute of Science and Technology (NIST). The LI-191 is calibrated via transfer calibration
  • Sensitivity: Typically 7 μA per 1,000 μmol s-1 m-2
  • Linearity: Maximum deviation of 1% up to 10,000 μmol s-1 m-2
  • Response Time: 10 μs
  • Temperature Dependence: ± 0.15% per °C maximum
  • Cosine Correction: Acrylic diffuser
  • Azimuth: < ± 2% error over 360° at 45° elevation
  • Sensitivity Variation over Length: ± 7% maximum using a 2.54 cm (1”) wide beam from an incandescent light source.
  • Sensing Area: 1 m × 12.7 mm (39.4” × 0.50”)
  • Detector: High stability silicon photovoltaic detector (blue enhanced)
  • Sensor Housing: Weatherproof anodized aluminum housing with acrylic diffuser and stainless steel hardware.
  • Size: 121.3 L × 2.54 W × 2.54 cm D (47.7” × 1.0” × 1.0”)
  • Weight: 1.4 kg (3.0 lbs.)
  • Cable Length: 2 m, 5 m (6.5', 16.4')
  • (1) LI-191R Line PAR Sensor
  • (1) Bubble level
  • (1) Detachable 10 ft. cable
  • (1) Hard-sided carrying case
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Robotic Fish May Reduce Live Fish Testing Near Hydroelectric Plants

Each year in Germany, as many as 450,000 living fish undergo live animal experiments to test how fish-friendly hydroelectric power plants in the country are. The idea is to discover how readily the fish can move through hydroelectric turbine installations in order to ultimately reduce mortality rates. Of course, subjecting live fish to a potentially deadly test to save others is a bitter irony. And it's one that a team of scientists from the RETERO research project hopes to eventually mitigate with a robotic fish for testing. EM corresponded with Olivier Cleynen and Stefan Hoerner from the University of Magdeburg about the complex flow conditions that set the parameters for the project.

Read More

Mobile HAB Lab, Citizen Scientists Building Awareness

News stories about dogs getting sick from harmful algal blooms (HABs) in lakes have caused worry among members of the public this summer more than once. But Regional Science Consortium (RSC) Executive Director Dr. Jeanette Schnars and a dedicated team are bringing awareness about HABs to the public with the Mobile HAB Lab. “We just launched the HAB Citizen Scientists program this year,” explains Dr. Schnars. “It helps us work with people, especially people who spend time at marinas frequently, that are out there all season long.” The season for boaters at Presque Isle, where RSC is located, starts in mid-May and usually continues through the beginning or middle of October.

Read More

Handheld Cyanotoxin Detection Technology Prototype

In the battle against harmful algal blooms (HABs), time is important . The need for laboratory equipment and testing is a serious challenge for water managers. This issue caught the eye of Qingshan Wei , an assistant professor of chemical and biomolecular engineering at North Carolina State University . “Our research group is interested in developing low-cost sensors,” Wei told EM . “Recently we have been developing sensors for environmental monitoring, and cyanotoxins came to our attention .” Cyanobacteria, which generate HABs, are becoming a challenge across the US . They are a very serious problem in North Carolina, in part due to the weather.

Read More